Facilities Overview and Status

Civil construction

- Facility design and construction
- Beam tube enclosure

Vacuum Equipment

- » Chambers
- » Pumps
- » Valves
- » Vacuum instrumentation

Beam Tube

- » Spiral weld beam tube
- » Bellows
- » Supports
- » Baffles

INITIAL DESIGN PERFORMANCE GOAL

LIGO DESIGN

OBSERVATORY CHARACTERISTICS

- Two Sites: Hanford, Washington & Livingston, Louisiana
- Two 4km interferometers & one 2 km interferometer (Hanford)
- ARMS ORIENTED "PARALLEL" TO ONE ANOTHER
- COINCIDENT OBSERVATIONS AMONG ALL THREE INTERFEROM-ETERS
- INITIAL SENSITIVITY: $h_{rms} \le 10^{-21}$ WITHIN 100 Hz BAND CENTERED AT MAXIMUM SENSITIVITY
- OBSERVATORY EXTENSIBILITY:
 - EVENTUAL EXPANSION TO 9 INTERFEROMETERS
 - LIMITING SENSITIVITIES:
 - Naturally occurring gravity gradients (at lowest frequencies)
 - Scattered light phase noise (in the mid-frequency range)
 - Residual gas phase noise (at the highest high-frequencies)

LVEA - Washington
36,000 = 9 ft

Beam Tube Euclosure

Civil Construction Accomplishments:

Design:

- » Ralph M. Parsons on-board as AECM since January 1995
- » Conceptual design of buildings and beam tube enclosure complete
- » Development of detailed designs in progress

• Hanford site:

- » Ambient ground noise measurements completed
- » Rough grading completed

Livingston site:

- » Wetlands delineation complete
- » Clearing and grubbing of site completed

Near-term objectives:

• 10/95 Complete pipeline crossings LA

10/95 Complete/approve beam tube enclosure

• 10/95 Ambient noise measurements LA

• ~11/95 Begin rough grading on LA site

~5/96 Final design of bldgs

Other milestones:

- ~7/96 Initiate construction on WA site
- ~2/97 Initiate construction on LA site
- ~12/97 Beneficial occupancy WA
- ~9/98 Beneficial occupancy LA

Set # 2 Sheet 6 of 1 LIGO-G950055-00-V

Set # <u>2</u> Sheet <u>3</u> of <u>1</u> LIGO-G950055-00-V

VACUUM EQUIPMENT

CHARACTERISTICS

- THE LIGO VACUUM SYSTEM (VACUUM EQUIPMENT + BEAM TUBES) PROVIDES:
 - A CLEAR APERTURE FOR THE INTERFEROMETERS --VERY LARGE APERTURE GATE VALVES TO ISOLATE 1.22 M BEAM TUBES
 - A CLEAN ENVIRONMENT FOR THE PRECISION OPTICS.
 - A LOW PRESSURE IN ORDER TO MINIMIZE DIFFRACTION AND ACOUSTIC COUPLING.
 - EXTENSIVE CONTROLS AND MONITORING EQUIPMENT TO ENSURE SAFE OPERATION
 - LARGE PUMPING SPEEDS AND VOLUMES -- BEAM TUBE PUMPING SOLELY FROM 4KM ENDS
- THE LIGO VACUUM SYSTEM WILL BE THE WORLD'S LARGEST HIGH PERFORMANCE VACUUM SYSTEM WITH A PUMPED VOLUME OF ROUGHLY 20,000 M³
- MOSTLY CONVENTIONAL VACUUM HARDWARE

Vacuum Equipment

•	8/94	Science Requirements review to refine specs
•	12/94	RFP for prelim design competition
•	4/95	Begin design competition and estimate production costs (CB&I, PSI)
•	6/95	PDR's held to evaluate competition
•	8/95	PSI selected to provide Vacuum Equipment

BEAM TUBE MODULES

BEAM TUBE BACKGROUND

- Design & Qualification Test Phase Contract with CBI
 - >> Contract Initiation: August, 1993
 - >> Preliminary Design Review: November, 1993
 - >> Final Design Review: April, 1994
 - >> Qualification Test: March, 1995
 - >> Qualification Test Review: April, 1995

BEAM TUBE CURRENT STATUS

- Successfully completed Qualification Test (March, 1995)
 - >> Demonstrated Design, Fabrication, Assembly
 - >> Demonstrated acceptable leakage: < 1 x 10⁻¹¹ atm cc/s
 - >> Demonstrated acceptable outgassing: H₂, < 1 x 10⁻¹³ t•l/s•cm²

 $H_2O_1 < 1 \times 10^{-16} \text{ tel/secm}^2$

- Qualification Test Review held (April, 1995)
 - >> Board endorsed the fact that all aspects of the test have been met
 - >> Board concurs LIGO is ready to commence fabrication & installation of beam tubes

Summary

- Feasibility of beam tube vacuum requirements has been industrially demonstrated.
- LIGO is becoming a construction project
- Major subcontracts for vacuum equipment and beam tube will begin in the next FY