Overview of Interferometry for Gravitational Wave Detection

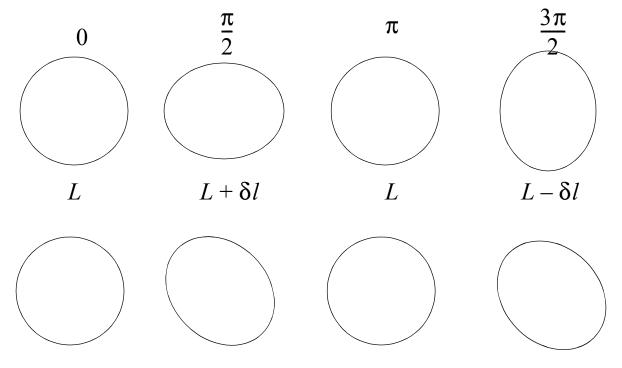
David Shoemaker MIT, LIGO Project

13 November 95

G950113-00-D

The '20 questions' approach, including...

- what are gravitational waves?
- why bother trying to detect GWs?
- how to detect such small strains?
- what are the fundamental limits?
- why do practical interferometers have such long arms?
- why are practical interferometers so optically complicated?
- what happens to all the light?
- what else can go wrong?


What are Gravitational Waves?

Strains in space-time (General Relativity)

- · lowest order of radiation: acceleration of mass quadrupoles
 - > no dipole radiation only one charge!
- transverse waves
- propagation speed of speed of light c
- spin 2, so 45° between '+' and 'X' polarizations

Net effect: variation in distance between free masses

• example of ring of free masses, diameter L, strain $h = \delta l/L$

Why try to detect GWs?

Only astrophysical sources are detectable

laboratory generated signals too small

Astrophysical sources are fascinating!

- Interaction with matter is very small
 - > BAD: tiny signals
 - > GOOD: waves no obscured by dust, gas, etc.
- can see deep and far, into galactic cores, edges of universe
- signals are from coherent motions of LARGE masses
 - > EM astronomy: mostly incoherent superpositions

Physics

- direct detection and measurement of GW properties
- proof of existence of Black Holes, detailed behavior
- looks at highly non-linear processes, strong-field GR

Astrophysics

- binary star studies: NS-NS, NS-BH, BH-BH
- stellar models via supernovae
- stochastic background (Big Bang remnant)

Brand new *quantity* as tool to understand physics

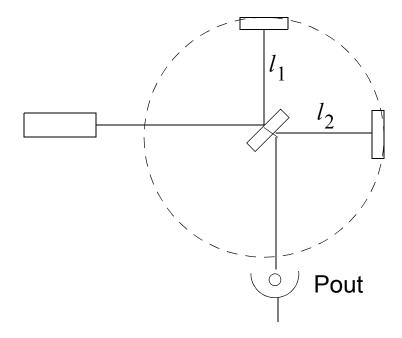
What signal characteristics?

Limited by present technologies, limited source knowledge

- will speak exclusively of ground-based interferometers
- no acoustic detectors, space-based interferometers

Favorite source: Binary stars

- Taylor-Hulse Binary 1913+16 shows clear spin-up
- almost certainly due to GW radiation at present 6h period
- later in life, period shortens to audio frequencies
- spends ~1 minute in frequency range from ~30 Hz-1 kHz
- good target frequency range for ground-based ifos.


for most of life, waveform well known if masses known

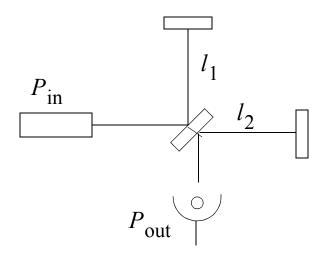
- allows calculation of signal amplitudes, optimal filters
- end of life (coalescence) a mystery (to be observed!)
- typical number: $h \approx 3 \times 10^{-22}$ for 1.4 M_o, 100 Mpc, 3 events/yr.
- since $h = \delta l/L$, expect $\delta l = 3 \times 10^{-22}$ m for L = 1 m

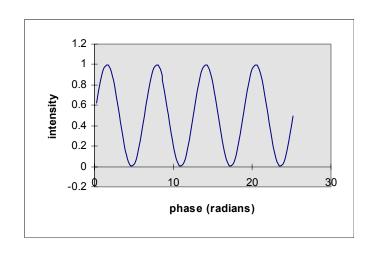
How to detect these tiny strains?

Laser Interferometry

almost perfect gedanken experiment

- GW strain induces differential length changes in arms
 - > common mode uninteresting for GWs, rejected
- lengths are measured using light beams and 'free masses'
- broadband response to GWs of varying frequency
- at least 4 independent discoveries of method
 - > Pirani ('56), Gerstenshtein and Pustovoit, Weber, Weiss
 - > Weiss '72: practical approach, scaling laws, limitations


What are the fundamental limits?


Shot or Poisson noise

intensity at ifo output is a function of arm length difference:

$$P_{\text{out}} = P_{\text{in}} \left(1 + \frac{1}{2} \cos \left[\frac{2\pi}{\lambda} (l_1 - l_2) \right] \right)$$

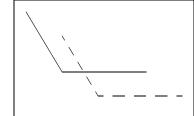
- maximum slope: $\frac{dP}{d\delta l} = \frac{2\pi}{\lambda} P_{\text{in}}$
- uncertainty in intensity due to counting statistics: $p_{\text{out}} = \sqrt{\frac{\hbar \omega}{P_{\text{in}}}}$
- can solve for equivalent strain: $h_{\rm shot} = \frac{\delta l}{L} = \frac{1}{L} \sqrt{\frac{hc\lambda}{2\pi P_{\rm in}}}$
- Note: scaling with $1/\sqrt{P_{\rm in}}$; gives requirement for laser power

Quantum Noise

Radiation Pressure

- quantum-limited intensity fluctuations anti-correlated in two arms
 - > can be seen as the action a statistical beamsplitter
 - > better, as result of vacuum fluctuations entering 'dark port'
- · photons exert a time varying force, with spectral density

$$\tilde{f} = \sqrt{\frac{2\pi h P_{\text{in}}}{c\lambda}}$$


results in opposite displacements of EACH of the masses:

$$\tilde{x}(f) = \frac{1}{mf^2} \sqrt{\frac{hP_{\text{in}}}{8\pi^3 c\lambda}}$$
, or strain $h = \frac{\delta l}{l} = \frac{2\tilde{x}}{L}$

- NOTE: scaling with $\sqrt{P_{\rm in}}$
- scaling with the arm length L of the interferometer.

total readout, or quantum noise

• quadrature sum $h_q = (h_{shot}^2 + h_{rad press}^2)^{1/2}$

- frequency dependence according to ifo configuration, but
- always a minimum for a given frequency as a function of Power
- for simple Michelson, $P_{\text{opt}} = \pi c \lambda m f^2$; later limitation, not now

Why long arms for interferometers?

Mechanical systems excited by the thermal environment

- results in physical motions of the tests masses
- total energy of $k_{\rm B}T$, leads to $\tilde{x}=\sqrt{\frac{k_{\rm B}T}{k_{\rm sping}}}$ for integrated motion
- spectrum according to Fluctuation-Dissipation theorem:

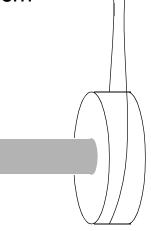
$$\tilde{x}(f) = \frac{1}{\pi f} \sqrt{\frac{k_{\rm B}T}{\Re(Z(f))}}$$
, $\Re(Z(f))$ the real (lossy) impedance

- e.g., damping term in an oscillator: $F_{\text{ext}} = m\ddot{x} + \Re(Z(f))\dot{x} + kx$
- usually think of viscous damping: $\Re(Z(f)) = b$, a constant
- most real materials show internal friction,
- F = -kx replaced by $F = -k(1 + i\phi(f))x$, $\phi(f)$ often constant
- peak 1/\u03c4 above 'plateau'
- rises as $1/\sqrt{f}$ below resonance
- falls as $1/f^{5/2}$ above resonance

Thermal Noise

Two regimes of interest: Below or Above resonance

(note: Resonant mass detectors ('bars') ON resonance)


Below resonance: internal modes of test masses

- test masses are fused silica cylinders, 25cmX10cm
- many modes contribute to net surface motion
 - > drumhead modes, compressional modes
- typical loss on resonance of 10^{-6}
- most important in range $100 \rightarrow 300 \text{ Hz}$

Above resonance: pendulum suspension

- test masses suspended as ~1 Hz pendulum
- minimizes loss of both pendulum and test-mass
- seismic isolation $(1/f^2)$ above resonance), positioning
- pendulum mode excited by thermal noise forces
- typical loss on resonance of 10^{-6}
- most important in range $10 \rightarrow 100 \text{ Hz}$

Both of these noise sources scale with arm length 1/LThermal (with other stochastic force terms) determines LLeads to LIGO 4km length; h=x/L

Gravity Gradients

local 'static' gravitational force sum of mass distributions

- overwhelmingly dominated by unchanging average earth mass
- additional time-varying contributions from other sources:
- seismic compression
 - > surface seismic waves compressing/rarefacting nearby earth
- weather
 - > variations in atmospheric pressure changing air density
- moving massive objects
 - > humans passing close (<10 meters) to test masses
- for moving/changing mass element M, $\dot{F}(t) = \frac{GM(t)m\dot{r}}{r^2}$

places limit on lowest frequencies detectable by ground-based interferometers

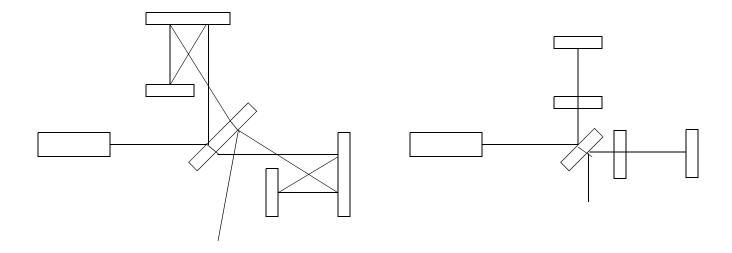
- some engineering solutions to ground variations, nearby activity
- nothing to do about the weather!
- practical limit: roughly 10 Hz
- encourages space-based interferometers (different problems...)

Another crucial reason to make interferometers long: these motions must be small compared with GW strains

Seismic Noise

motion of the earth

- driven by ocean tides, wind, volcanic/seismic activity, humans
- for LIGO sites, characterized by (in m/\sqrt{Hz})
 - $\rightarrow \frac{10^{-9}}{f^3}$, 0.1<f<1 Hz (controls frequency region)
 - > 10^{-9} , 1<f<10 Hz (controls frequency region)
 - $\rightarrow \frac{10^{-7}}{f^2}$, 10<f<1 kHz (GW signal region)


approaches to limiting seismic noise

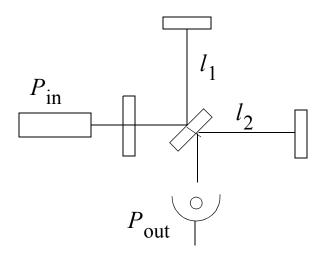
- active control systems (0.1 \rightarrow 30 Hz)
 - > accelerometer measures motion w.r.t. inertial mass
 - > servo system and actuator corrects for perceived motion
 - > outside of vacuum system
- passive elastomer-steel 'stacks'
 - > damped SHOs in series
 - > in-vacuum: extra design constraints
- one or more low-loss pendulums
- test mass forms one; second good for thermal noise, control can be controlled with careful engineering

Why not simple Michelsons?

1) interaction time with the GW

- signal δl grows as length of interferometer L grows
- up to limit where $L \approx \lambda_{GW}$, about 100 km
- not practical to make 100km straight path, so fold it

- Delay line
 - > simple, but requires large mirrors and limited storage time
- Fabry-Perot
 - > compact, but imposes modes, resonance on system
- 10 msec storage time for initial ground-based system


Why not simple Michelsons? con't

2) insufficient raw laser power

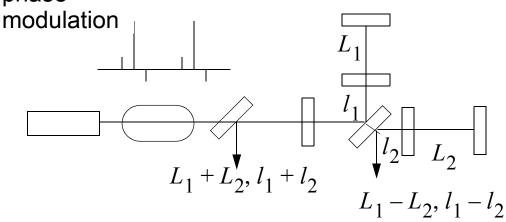
- predicted sources require shot noise of ~100 W on beamsplitter
- suitable lasers produce ~10 W, only ~5W at ifo input

Make resonant cavity of interferometer and additional mirror

can use ifo at 'dark fringe'; then input power REFLECTED back

- known as Recycling of light (Drever, Schilling)
- Gain of ~30 possible, with losses in real mirrors
- allows present lasers to deliver needed power

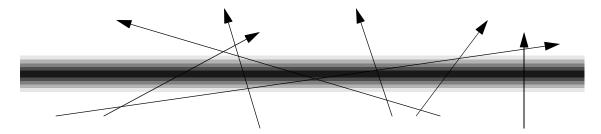
Something for nothing?


- no, cannot use all that light to heat room
- just extract small amount (10^{-20} or so) if GW passes

Complications....

Gives 6 suspended optics, 4 length DOF to control

- Michelson dark fringe condition
- both Fabry-Perot arms on resonance (maximum $d\phi/dl_n$)
- · recycling cavity on resonance/laser wavelength correct


Prefer to analyze as common mode/differential mode phase

- use techniques reminiscent of reflection locking (Pound/Drever)
 - > for common mode signals
 - > use separate frequencies to investigate near, far mirrors
- use small asymmetry $l_1 l_2 \approx \lambda_{\rm RF} / 4G_{\rm recyc}$ for differential sigs
 - > no longer 'white-light' interferometer
 - > brings phase sidebands out dark port for heterodyne detection

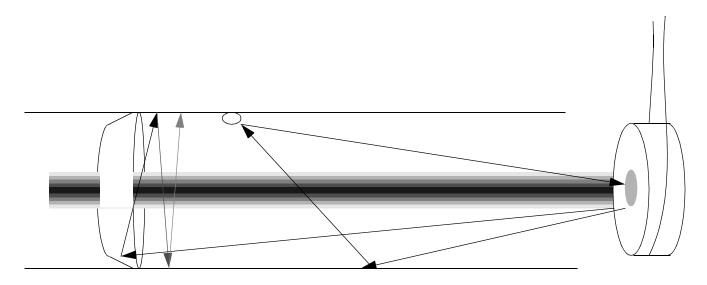
Why the vacuum system?

Light must travel 4 km without attenuation or degradation

- index fluctuations in residual gas cause variations in optical path
- calculation takes into account many parameters
 - > pressure, polarizability, molecular speed of various species
 - > light beam intensity distribution, coherence of effect
- requirement for quality of vacuum in 4 km tubes from this
 - > $\rm H_2$ of 10^{-6} torr initial, 10^{-9} torr ultimate
 - > $\rm H_2O$ of 10^{-7} torr initial, 10^{-10} ultimate
- vacuum system, 1.4 m diameter, ~1200 cubic meters

Also have requirement on contaminants

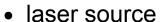
- low-loss optics can not tolerate surface 'dirt'
- more difficult to define, limited to region around test masses


Where does the light go?

scattered light: ~ 60% of light lost here!

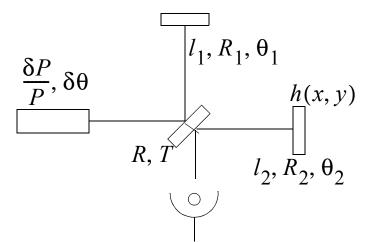
- most is lost as heat
- some recombines with main beam, adding small random vector
- suffers additional time-varying phase shift
- all optics have some finite backscatter
- spurious interferometers abound; care with all stray beams

light from mirror surface


- typically from imperfection on ~0.5 cm scale, height 1 nm
- scatters out of main beam, onto beam tube, back onto mirror
- baffles used to strongly attenuate paths

What else can go wrong?

many sources of imperfection:


- ifo asymmetries
 - > lengths (intentional!)
 - > losses
 - > beamsplitter
- ifo control errors
 - > length
 - > alignment

- > fluctuations greater than shot noise
- > angular or translational beam pointing fluctuations
- sensing systems
 - > linearity
 - > spatial uniformity

much of the technical effort goes into these noise sources

- complicated sensing and control problems
- state-of-the-art optics
- state-of-the-art lasers

The Last Page

The '20 questions' again:

- what are gravitational waves?
- why bother trying to detect GWs?
- how to detect such small strains?
- what are the fundamental limits?
- why do practical interferometers have such long arms?
- why are practical interferometers so optically complicated?
- what happens to all the light?
- what else can go wrong?

And: what's the plan?

LIGO (Laser Interferometer Gravitational-wave Observatory)

- MIT-Caltech collaboration
- two 4km installations: Washington and Louisiana
- to be first operational in 2001
- to last with continuous modification till 2020 at least
- starting with 3 interferometers (2 in WA, 1 in LA)
- initial space for 4, later beam capability of 6 per site
- eager for help on initial ifos, competition for the next generation

Hope that Stanford will play both roles!