R. Vogt February 9–10, 1995 Science & Technology Meeting

DETECTOR

BASELINE CONCEPT adopted in:

```
Cost Book (September '94)

Detector Implementation Plan (December '94)
```

 SUBSYSTEMS currently in various stages of conceptual designs/prototypes:

```
PSL / IOO
COC / COS
ASC
LSC
SEI
SUS (D)
```

- SCHEDULE: Detector installation 98/99.
- APPROACH: Design, build, install baseline subsystem unless superseded by improved version (within allowed cost and schedule).

Aggressive "optimization" entails risk for payoff!

SEISMIC ISOLATION

PROTOTYPES:

Passive stack in 40-m system Active isolators in 5-m system

LIGO Passive Stacks (4 layers):

Total cost: \$10.3M

Weight:

BSC / TMC \sim 3,700 lbs / layer HAM \sim 1,700 lbs / layer BSC / TMC stack plus support: \sim 49,500 lbs

HAM stack plus support: \sim 10,800 lbs

Cost driver: First resonance mode of top plate > 300 Hz

Technical risk: elastomers (creep, contamination)

• Optimization: Engineering R&D effort (\sim 1 yr) with High Technology Engineering Services, Inc.

Goal:

- · Reduced weight
- Replacement of elastomers with damped metal springs.
 Zero elastomer exposure to vacuum.

HIGH POWER LASERS

• BASELINE: Argon ion laser (.514 μm , cw, 5W)

Concerns:

Reliability (downtime, tube life)

Efficiency (10⁻⁴)

Performance (amplitude / frequency noise)

 OPTIMIZATION: Replace with diode-pumped Nd-YAG or Nd-YLF solid state laser

Advantages:

Good wall-plug efficiency
Very reliable (diode lifetime several thousand hours)
Good amplitude / frequency stability
Soft failure mode for fiber-coupled multiple pump sources

- COMMERCIAL AVAILABILITY:
 - Market in graphics, high speel printing
 - R&D in Byer group (Stanford)
 - Vendors:
 - SCHWARZ ELECTROOPTICS (proprietary info!!)

Nd-YLF (less sensitive to temperature fluctuations)

product release within weeks 1047 nm, cw diode pumped 12–13 W TEM $_{00}$ frequency doubled (multi-frequency) > 5W within year (can be modified for single frequency)

SPECTRAPHYSICS

Nd-YAG product release by May (CLEO) 1063 nm, cw, multi-frequency 10 W

LIGHTWAVE ELECTRONICS

Nd-YAG product release? 1063 nm, cw 10 W

- Promising, but not certain for LIGO schedule
- TBD: Analyze IFO performance for intermediate wavelength coating (523 or 519 nm) of optics, which would keep SS option open longer with safety of gas laser.

SUSPENSION / CONTROL OF OPTICS

- Replace magnet sensing and control by electrostatic system.
 Increase mechanical reliability and reduce noise factors.
- Evaluate potential of multi-pendular suspensions, reaction mass, etc.
- Part of this work could be contracted to HTES, Inc.?

1 rojections: Diode-Pumped, Single Frequency, cw Laser Sources

	Commercial	State of the Art
IR Laser Sources		
Today:	1 Watt	20 Watts
5 years:	50 Watts	200 Watts
Green Laser Sources		
Today	0.1 Watt	3 Watts
5 year:	10 Watts	50 Watts

conclusion

Developed theory and measured noise of 5 W injection locked system

Designed and built a cw, diode-laser-pumped, Nd:YAG laser which emits:

72 W Multimode

40 W TEM₀₀

20 W single frequency

Diode-laser-pumped laser sources meeting LIGO power requirements should exist commercially by 2000

RJS January 26, 1995

System Reliability Test

Intensity Noise Summary

1 requency Noise Summary

Schematic of Laser Head

