AGENDA FOR THE LIGO INTEGRATION MEETING

9 February 1995

Facilities	0900 - 0930	
Ground motion measurements at the	sites	Lisa Sievers
Foundation motions and alignment		Mike Gamble
Beam Tube	0930 - 1030	
QT Status & Baffle design issues		Larry Jones
Tube motion analysis		Mike Gamble
Beam tube scattering measurements	Rai Weiss	
• Synopsis of the Baffle Review Meetin	g	Albert Lazzarini
BREAK	1030 -1045	
Vacuum Equipment	1045 - 1115	
Deferral of getter pump procurement	Mike Zucker	
Procurement status & update		John Worden
Detector	1130 - 1245	
Length control modeling		Lisa Sievers
		Jordan Camp
		Dave Redding (JPL)
IFO configuration definition		Yaron Hefetz

;

LIQ0-G950121-00-D1

Optical Modeling for Length Control

February 9, 1995

David Redding

Jet Propulsion Laboratory, California Institute of Technology 818-354-3696 dave@huey.jpl.nasa.gov

Single-Cavity Simulation

- "Green's function" model sums impulse response of cavity times source for all past times
 - Impulse response depends on position of mirrors at all intervening times
 - Three frequencies (carrier and 2 sidebands)

Single-Cavity Simulation (cont.)

Circulating field:

$$E_{AB} = t_A \left[I + \sum_{n=1}^{n_{beams}} \left[\prod_{m=1}^{n} g_m \right] \right] E_s$$

Round-trip gain:

$$g_m = r_A r_B e^{-jk(dL_{s2m} + 2\delta_{B(2m-1)} - 2\delta_{A2m})}$$

Arrange into recursive form:

$$E_{AB} = t_{A} \begin{bmatrix} 1 + g_{1} + g_{1}g_{2} + \dots + g_{1}g_{2} \cdots g_{n_{beams}} \end{bmatrix} E_{s}$$

= $t_{A} \begin{bmatrix} 1 + g_{1} \begin{bmatrix} 1 + g_{2} \begin{bmatrix} \dots \begin{bmatrix} 1 + g_{n_{beams}} \end{bmatrix} \cdots \end{bmatrix} \end{bmatrix} E_{s}$

Update equation is carried forward in time together with dynamics and control equations:

$$(E_{AB})_i = t_A(E_s)_i + g_i(E_{AB})_{i-2}$$

Typical Response

,

Time-Domain Simulation

- Recursive form allows faster evaluation for LIGO cavities (high finesse, long length, high BW control)
 - Time step is a sub-multiple of the one-way light time
- Formulation assumes that light time is constant.
 - Error if mirrors are far from nominal position and moving rapidly:

$$\frac{\delta \Delta L_{eff}}{fringe \ width} < \frac{8 \ finesse^2 \ v \ dL}{\pi \lambda c}$$

- Worst case (40 m cavity) error ratio < 1e-6 for acquisition control, much less near resonance
- No qualitative change in system response
- Code written in Fortranfor execution speed, linked to Matlab control design environment for ease of use
- Approach generalizes straight-forwardly to coupled cavities, recombined cavities, recycled interferometer

Frequency Response

• Frequency response obtained by Laplace transforming time-domain equations

$$\frac{I_d}{\delta_A}(s) = 8kE_c E_{sb} \left[-t_A^2 \frac{2r_A r_B}{1 - r_A^2 r_B^2} - t_A^2 \sum_{i=1}^{\infty} \left(\frac{(r_A r_B)^{i+1}}{1 - r_A r_B} - \frac{(-r_A r_B)^i}{1 + r_A r_B} \right) e^{-2i\tau s} - \frac{t_A^4}{r_A^2} \frac{r_A r_B}{1 - r_A^2 r_B^2} \left[\sum_{i=1}^{\infty} \left((r_A r_B)^{i+1} + (-r_A r_B)^{i+1} \right) e^{-2i\tau s} \right] \right]$$

- Agree with M. Regher's results for single cavity
- Rational form developed by L. Sievers

۰.

Coupled Cavity Simulation

l (mm)	LAB (m)	LBC (m)	RA	RB	RC	fmod (mHz)
0.5145	6.000000216	3990.0001436	0.9499	0.9699	0.9998	12.4875

 Coupled cavity interferometer presents programming challenges similar to those expected for recycled interferometer

Coupled Cavity Simulation (cont.)

- Green's function approach would require summing large numbers of beams
- Recursive form avoids this problem
 - Accumulate fields in both cavities as a running product
 - Time step a submultiple of one-way light time in short cavity

Coupled Cavity Simulation (cont.)

Update equations:

Circulating field in front cavity:

$$(E_{AB})_{i} = t_{A}(E_{s})_{i} + g_{ABi}(E_{AB})_{i-2} + h_{i}(E_{BC})_{i-1}$$

$$g_{ABi} = -t_{BS}^2 r_A r_B e^{-jk^2(\delta_{B(i-1)} - \delta_{Ai})}$$

Circulating field in back cavity:

$$(E_{BC})_{i} = t_{BS}t_{B}(E_{AB})_{i-1} + g_{BCi}(E_{BC})_{i-2n}$$

$$g_{BCi} = r_B r_C e^{-jk2(\delta_{C(i-2n)} - \delta_{Bi})}$$

Field at detectors:

$$E_{dAi} = r_A e^{-jk2\delta_{Ai}} E_{si} + t_{BS}^2 t_A r_B e^{-jk2\delta_{B(i-1)}} E_{AB(i-2)} + t_{BS}^2 t_A t_B r_C \frac{t_B}{r_B} e^{-jk2\delta_{C(i-1-n)}} E_{BC(i-1-2n)}$$
$$E_{dBi} = r_{BS} E_{ABi}$$

Typical Response

Continuing Work

- Coupled cavity
 - Frequency response validation
- Recombined cavity
 - Programming issues were resolved in single-cavity work
 - Provides a validation point
- Recycled interferometer cavity
 - Programming issues were resolved in coupled-cavity work
 - Predicts length control performance of full-up LIGO