Phase Noise Interferometer MOTIVATION & OBJECTIVES

Peter Fritschel 20 March 1996

- Phase Noise: fringe measurement noise which remains when mirrors are fixed in inertial space
- LIGO needs high phase sensitivity $\sim 10^{-10} \text{ rad/} \sqrt{\text{Hz}}$
 - to measure strain of $h \sim 10^{-23} / \sqrt{\text{Hz}}$ at 150 Hz
 - >> Noise due to Poisson photon statistics, 'shot noise' $\sim \sqrt{P}$
 - Need optical power at beamsplitter of 150 W (1 micron)
 - >> Noise due to other sources scales more quickly with power

1 of 7

- Example: laser beam pointing fluctuations

Phase Noise Interferometer MOTIVATION & OBJECTIVES

- Demonstrate phase sensitivity of initial LIGO
 - >> System test of phase sensing scheme (rf modulation/demodulation; asymmetry based detection)
 - >> Task is to control other optical noise sources as power is increased
- High phase sensitivity tests of LIGO technology
 - phase modulators (residual AM, beam wiggle, osc. reqs)
 - photodetectors (power handling, non-linearity)
 - laser stabilization (frequency, amplitude, beam direction)
- Training of scientists
 - >> Working with a suspended prototype interferometer

Phase Noise Interferometer PEOPLE

· Scientists:

Peter Fritschel - 0.5 FTE (leader)

Gabriela Gonzalez - 0.75 FTE

Graduate students

Partha Saha

Brian Lantz

Technician

Ed Kruzel - 1 FTE

· Electronics engineer

Ralph Burgess - 0.5 FTE

- + support from LIGO CDS when needed
- New Hire: near-term postdoc, to work on conversion to YAG laser

3 of 7

Phase Noise Interferometer STATUS OF RESEARCH

- Interferometer construction: mid 94 mid 95
 - prestabilized laser
 - input optics
 - seismic isolation system
 - suspended optics
- Testing of commercial active seismic isolation system (Barry Controls' STACIS)
- Simple Michelson research: mid 95 end 95
 - >> LIGO technical report written on interferometer performance (LIGO-T950121-01-R)
- Recycled Michelson construction: Dec 95 -Feb96
 - >> first locking of recycled Michelson: beginning March
 - >> shakedown and noise studies now begin

LIGO

Phase Noise Interferometer NOISE SPECTRUM PROGRESS

Phase Noise Interferometer PLANS

· Near term:

- >> refine length/laser frequency control system
- >> implement 1 wavefront sensor to stabilize the differential alignment of the Michelson
- Research with Ar⁺ laser
 - >> continue through with noise studies of recycled Michelson
 - >> ~ 4 months additional work
 - >> thesis work for P Saha

LIGO-G960044-00-D

Phase Noise Interferometer PLANS

- Important to test laser system in a high phase sensitivity interferometer
- Conversion to Nd:YAG, 1.064 μm
 - >> 'core' optics in production delivery by end of May
 - >> start with 700 mW NPRO; copy prestabilization system currently being developed at Caltech (tests complete early Aug)
 - >> new postdoc to integrate & test prestabilization in parallel with Ar laser interferometer research
- Research with Nd:YAG source
 - >> 2 Options for start (Aug 96):
 - simple Michelson, as previously
 - two mirror cavity → frequency noise and laser control (new)
 - >> quickly move to recycled Michelson
 - >> tests of a prototype LSC photodetector (end 96)
 - >> integrate high power laser when available (~1.5-2 yrs)
 - PNI to receive 1 of initial group of 3 high power lasers
 - >> thesis work for B Lantz

