## LONGER TERM OUTLOOK FOR RESEARCH AT MIT

Rai Weiss 20 March 96

- THREE ELEMENTS OF FUTURE PROGRAM
  COMMISSIONING AND INITIAL OPERATIONS
  OBSERVATION PLANNING AND DATA ANALYSIS
  DEVELOPMENT OF ENHANCED AND ADVANCED
  DETECTORS
- REQUIRES

  ADDITIONAL FACULTY

  NEW FACILITIES

  AUGMENTED RESEARCH SUPPORT

# COMMISSIONING AND INITIAL OPERATIONS

• LIGO Operations, 1997 - 2001 Plan (5/11/95)

| Event                                                               | Hanford date | Livingston date |
|---------------------------------------------------------------------|--------------|-----------------|
| Joint Occupany                                                      | 09/97        | 03/98           |
| Beneficial Occupancy                                                | 03/98        | 09/98           |
| Accept Vacuum Equipment                                             | 03/98        | 09/98           |
| Initiate Facilities Shakedown                                       | 03/98        | 09/98           |
| Initiate IFO Installation                                           | 04/98        | 01/99           |
| First PSL operational                                               | 06/98        | 04/99           |
| First light on beam splitter                                        | 08/98        | 06/99           |
| First Recycled Michelson Resonance                                  | 11/98        | 08/99           |
| First Full Interferometer Resonance                                 | 03/99        | 11/99           |
| Detector Commissioned (h <sub>ms</sub> ≤ 10 <sup>-20</sup> )        | 07/00        | common          |
| Begin Normal Operations                                             | 07/00        | common          |
| Detector Design Sensitivity (h <sub>rms</sub> ≤ 10 <sup>-21</sup> ) | 11/01        | common          |

# COMMISSIONING AND INITIAL OPERATIONS

### Functions and Responsibilities

- >> Facilities
  - Scientific support in test and acceptance of the beam tubes
- Scientific support in test and acceptance of the vacuum equipment
  - Scientific support in acceptance of the LIGO buildings
  - >> Detector Installation and Commissioning
    - Interaction with vendors during construction
    - Subsystem tests prior to installation in field
- Installation team for the Interferometer Sensing and Control System in conjunction with staff resident at sites
- Installation team for the Physical Environment Monitor System in conjunction with staff resident at sites
- R&D at MIT as needed to support initial detector installation in the field

# COMMISSIONING AND INITIAL OPERATIONS

- $\rightarrow$  Detector Integration and Improvement  $10^{-20} \Rightarrow 10^{-21}$ 
  - Design, implement and analyse diagnostic tests
  - Establish the sources limiting the detector noise budget
  - Guide the development of on-line analysis techniques
  - Advise on division of time dedicated to search vs improvement
- >> Initial Data Analysis
  - Plan the production of reduced data sets
  - Couple to LIGO Research Community data analysts
  - PhD thesis exploratory searches (tricky business)
- >> DEAL WITH THE CRISIS THAT LIGO IS OBSERVING SIGNALS
- A real possibility given a factor of 100 to 1000 improvement in sensitivity and we are listening
  - Devise additional tests to separate real signals from artifacts

## OBSERVATION PLANNING AND DATA ANALYSIS

## PROGRAMMATIC ISSUES

- >> Project need that can be satisfied by larger community of scientists in other areas: high energy, nuclear physics, radio and x ray astronomy .....
- >> Near term (data formats, diagnostics) and long term (optimal filters, detection algorithm development, end end modeling) issues

## OPPORTUNITY FOR MIT and LIGO

- >> New faculty position in LIGO data analysis and gravitational wave astrophysics. Strong coupling to astrophysics division and other areas of astrophysical research
- >> Focus the current interest in LIGO in the MIT astrophysics division
  - jointly supervised graduate student : Prof Bertschinger/LIGO
- >> Interact with groups at Caltech, VIRGO, GEO ... on data analysis of gravitational wave detectors
- >> Interact with astrophysicists using other observational methods to gain the best science

# DATA STRUCTURES AND ANALYSIS

- OPERATIONS
- DIAGNOSTICS
- CALIBRATION
- ENVIRONMENTAL CORRELATION
- REDUCED DATA SETS
- DETECTOR MODELS
- SOURCE MODELS
- SEARCH STRATEGIES
- MULTIPLE DETECTOR ANALYSIS
- DETECTION CONFIDENCE
- SOURCE STATISTICS
- PHYSICS AND ASTROPHYSICS
- CONNECTION TO OTHER FIELDS

## **DETECTOR RESEARCH**

## ENHACEMENTS TO THE INITIAL DETECTOR

## >> MAJOR IMPROVEMENTS FROM CONTROL OF RANDOM FORCES

- >> Double suspension systems
  - isolation from thermal noise of seismic isolation stage
  - improved seismic isolation
  - reduced thermal noise from internal modes
  - electrostatic controllers: smaller risk of magnetic field coupling
- >> Lower frequency isolation stack
  - improved seismic isolation to the gravitational gradient limit
  - damped metal spring replacement for elastomer
- >> Reduction of internal thermal noise
  - new test mass materials
  - methods to achieve damping at theoretical material limits
  - correlation techniques to measure the internal thermal noise

## **DETECTOR RESEARCH**

### Improvement in the phase noise

- >> Increased laser power and reduction in scattering
  - 100 -- 1000 watts of 1.06 micron
  - improved coating and polishing

### ADVANCED DETECTORS

- >> New interferometer optical configurations
  - amplitude recycling
  - frequency tracking interferometers

## **DETECTOR RESEARCH**

### • PROGRAMMATIC ISSUES

- >> Many directions to take
- >> Collaborations needed
- LIGO Research Community participants a beneficial way to increase scientific and engineering capabilities
- Successful collaborations will most likely involve combinations of "insiders" with "outsiders"

## To maintain vitality of MIT experimental effort

- >> need to propose for new research support
- >> faculty appointment in area of precision measurements with emphasis on use of LIGO as primary research activity
  - >> interferometer staging system
    - size consistent with LIGO components
    - length consistent with LIGO modulation frequencies (12-16m)
    - in new seismically quiet location
- capability to carry out research on both displacement and phase noise

BACK UP SLIDES ON DATA STRUCTURES AND ANALYSIS FOR DAY II

### DIAGNOSTICS

- >> interferometer operating conditions
  - state vector : binary
  - settings table: gains, time constants
  - long term avg vector: dc offsets
- >> auxiliary interferometer signals
- displacement signals: common and differential mode Michelson, common and differential mode cavity
- alignment signals: common and differential mode Michelson, common and differential mode cavity
  - >> optical signals
    - input light amplitude fluctuations: base band and RF
    - input light frequency fluctuations
    - input light position fluctuation vector
    - input light angle fluctuation vector
    - sideband amplitude fluctuations

# DATA STRUCTURES AND ANALYSIS

- >> Mechanical signals
  - Suspended mass position vectors
  - Suspended mass angular vectors

### CALIBRATION and STIMULATION

- >> interferometer sensitivity and spectrum
  - continuous differential cavity mode excitation
  - periodic (hourly?) spectrum
- >> input large amplitude intensity excitation
- >> input large amplitude frequency excitation
- >> input large amplitude beam position and angle excitation
- >> interferometer control loop offset step noise spectrum
- >> optical component large amplitude dither vectors

### ENVIRONMENTAL CORRELATION

- local
- site/site

#### >> TECHNIQUE

- veto
- linear regression to improve signal/noise, detection confidence

#### >> PARAMETERS

- 3 axis seismic motion / building

0.1 < f < 10 Hz

- 2 axis tilt / building

f < 10 Hz

3 axis acceleration / tank

10 < f < 1000 Hz

acoustic pressure / tank

f < 1000 Hz

- 3 axis magnetic fields

f < 1000 Hz

- radio frequency interference / building
- cosmic ray muons / building

t < 1 msec

power line fluctuations / building

# DATA STRUCTURES AND ANALYSIS

#### >> PARAMETERS (cont)

- residual gas monitors /building /km beam tube
- \*\*molecular resonance absorption monitor /arm
- \*\*stray light monitor /km beam tube
- \*\* not in current budget

### REDUCED DATA SETS

- >> primary data/inteferometer/site
  - calibrated in standard units: h(t) or h(f)
  - instrument signatures removed
  - time tagged to microsecond
  - 1 to 4 x 10<sup>9</sup> bytes/day
- >> processed data/interferometer/site
  - list of interferometer state vector and environmental vetos
  - linear regression to environmental parameters
  - linear regression to ancillary interferometer signals

LIGO Project

13 of 20

LIGO-G960049-00-M

LIGO Project

14 of 20

### SEARCH STRATEGIES

#### >> IMPERFECT FILTERS

- prescreening if analysis is computation intensive
- gain statistics against signal to noise

#### >> ONLINE FILTERS

- reduction in stored data
- preconceived waveforms

#### >> BURST SEARCHES

- threshold crossing, vetoed, event list comparisons
- instrument and environment signatures removed, filtered cross correlation

#### >> CHIRP SEARCHES

- search templates (period and period derivative)
- many detailed templates
- $\chi^2$  minimization using model parameters

# DATA STRUCTURES AND ANALYSIS

### SEARCH STRATEGIES (cont)

#### >> PERIODIC SOURCES

- all frequency, selected location
- all frequency, all location
- amplitude spectra over total observing time (window function)
- average of power spectra
- search for amplitude and frequency modulation due to motion of detector
  - how to handle wandering local oscillators
- value of data from different interferometers at same and remote locations

### STOCHASTIC BACKGROUND

- frequency filtered cross correlation widely separated interferometers
  - frequency filtered cross correlation local interferometers
  - spatial anisotropy observations

LIGO Project

15 of 20

LIGO-G960049-00-M

LIGO Project

16 of 20

### DETECTION CONFIDENCE

- >> Uncertainty in statistics of singles detection with non Gaussian noise
  - >> Reduction to Gaussian statistics by remote coincidence
- >> Can one use a Neyman Pearson hypothesis test (likelihood function) with non-Gaussian noise?
- >> How serious is the non-Gaussian noise in other than burst searches?
  - >> How elaborate does a Monte Carlo model have to be?

# DATA STRUCTURES AND ANALYSIS

### LIST OF CURRENT PROBLEMS

- 1) Benefits of linear regression to environmental and ancillary interferometer signals
  - >> Improvement in S/N Gaussian statistics
  - >> Improvement in detection confidence
  - >> Models for non Gaussian noise
  - >> Improvement as a function of correlation coefficient and noise in correlated parameters
- 2) Physics/Astrophysics bounded filters
  - >> Dynamical limits
  - >> Conservation laws
  - >> Astrophysical bounds

LIGO Project

17 of 20

LIGO-G960049-00-M

LIGO Project

18 of 20

- 3) Trigger filters (templates)
  - >> generic filters
  - >> increase in signal/noise and confidence of detection with more accurate filter
  - >> is it possible to define an optimum signal processing strategy ?????
- 4) Reduced Data Sets
  - >> Define minimum pre processing to allow data to be analysed by non-experts
    - >> Define the signals in a reduced data set
- 5) Advantages for a periodic search using data from two sites
- 6) Stochastic background and Burst Search using data from the same site

## DATA STRUCTURES AND ANALYSIS

- 7) How to use data from multiple sites
  - >> improve detection confidence
  - >> determine position in sky
  - >> determine polarization of waves
- 8) Design the diagnostic tests

LIGO Project

19 of 20

LIGO-G960049-00-M

LIGO Project

20 of 20