Gravitational Waves

The Status of LIGO

Barry C. Barish
Caltech
Orbis Scientiae
January 26, 1996

Neutron Star Binary Coalescence

<u>Method</u>	<u>Our</u> Galaxy	<u>Distance for</u> <u>3/yr</u>
Progenitor Death Rate	~1/1000 yr	130 M.L.yr
Binary Pulsar Searches and Discoveries	~1/10 ^{5±1} yr	600 M.L.yr.
Ultra-conservtive Limit from Binary Pulsar Searches	~1/10 ⁷ yr	3000 M.L.yr

International Effort - Gravitational Waves

Techniques

- » Resonant Bar Detectors
- » Large Scale Interferometers

International Interferometer Effort

- » U.S. -- LIGO (Two Sites)
- » Europe -- VIRGO (One Site)

plus, smaller efforts

- Germany, Japan, Australia

Combination yields

- » Reliable detection
- » Pointing to source
- » Decomp. of grav wave polarizations
- » Evolution of sensitivity

Time Scale

» Approximately year 2000

Forces Exerted by a Gravitational Wave

If Detector Size << Wavelength (4 km) (300-30,000km)

Then: Quadrupolar Lines of Force

+ Polarization x Polarization

Gravitational Wave Emission

Russell Hulse and Joseph Taylor

PSR 1913 + 16 17/sec

Timing of Pulsars

8 hr

Timed to ~50 μsec Since discovery, observed period gradually speed up

- 10 sec in 15 years
- growing quadratically in time

Due to loss of orbital energy, from emission of gravitational waves

LIGO Scientific Mission

 Direct Detection of Gravitational Waves

> Neutron Binary Coalescence (Last 15 minutes of Hulse/Taylor in 100 Million Years)

- » Test General Relativity in Strong Field and High Velocity Limit
- » Measure Polarization and Propagation Speed

LIGO Long Range Goals

"New Tool" to Explore the Universe

- » Final Coalescence of Binary Systems
 - Neutron Star/Neutron Star

Design Benchmark:

last 15 min;

20,000 cycles

600MLyr

- Black-hole/Black-hole or /Neutron Star
- » Supernovae
 - Axisymmetric in our galaxy
 - Non-axisymmetric ~300MLyr
- » Early Universe
 - Vibrating Cosmic Strings
 - Vacuum Phase Transitions
 - Vacuum Fluctuations from Planck Era
- » The Unknown

Gravitational Wave Detection Strategy

Interferometer Sensitivity

- » R&D Program
 - Technology Development
 - Demonstration Experiments
- » Engineering Implementation
 - Precision Engineering Design
 - Quality Control

Two Sites - Three Interferometers

» Single Interferometer

~50/hr

- non-gaussian level

» Hanford (Doubles)

~1/day

correlated rate (x1000)

» Hanford + Livingston

< 0.1/yr

uncorrelated (x5000)

LIGO Project

Detector

- » Detection Strategy
- » Interferometers

• R&D

- » Noise Sources and Sensitivity
- » Demonstration Experiments

Major Facilities

- » Beam Tube
- » Vacuum Systems
- » Civil Construction

Status and Plans

Civil Construction

Characteristics

- » Structures, Foundation, Roads, etc
 - Large and Clean Laboratory Bldgs
 - Beam Enclosures
 - Office/Lab Space
- » Requirements
 - Seismic Stability, Noise Sources, etc
 - Cleanliness

Status and Plans

- » Both Sites Acquired
 - Grading Wash; Clearing in Lousiana
- » Design/Const. Management
 - Awarded to Parsons (Nov 95)
- » Conceptual Design -
 - 90% A&E received 4/95
 - Trade Studies; Value Engineering

LIGO Facilities Civil Construction

A & E Contract

- » R. M., Parsons -- initiated Jan 95
- » scope: design and construction management for buildings, enclosures, offices etc
- » requirements for seismic stability, noise sources, cleanliness
- » conceptual design approved in July for scope consistent with LIGO budget
- » final design proceeding as "design to cost"

Status of Construction

- » Both sites acquired; no major problems remain
- » Washington:
 - rough grading completed; settling
- » Louisiana:
 - cleared and grubbed;
 - pipeline reconfigurations solved and underway
 - rough grading bids received, begin soon

Vacuum Equipment

Characteristics

- » Enormous Volume (~20,000 m³)
- » Mostly Standard Vac. Equipment
 - 1st stage roughing Atm -> 0.1 torr
 - 2nd stage roughing 0.1 torr ->10-6 torr
 - Steady State Ion/getter pumps.
- » Large Gate Valves (4ft diam)
 - access and flexibility
- » Controls and Monitoring

Status and Plans

- » Specifications Defined
 - Science Review Complete Aug '95
- » RFP for Design and Manufacturing
 - CBI and PSI awarded design contracts
 - Down-select 6/95

LIGO Facilities Vacuum Equipment

Characteristics

- » mostly standard vacuum equipment
 - 1st stage roughing atm -> 0.1 torr
 - 2nd stage roughing 0.1 torr -> 10⁻⁶ torr
 - steady state ion/getter pumps
- » large gate valves (4 ft diam)
 - access and flexibility
- » controls and monitoring

Status

- » Science requirements and review 6/94
- » RFP issued for design contract only
- » Two competitive contracts awarded (CB&I, PSI)
- » Final design and manufacturing
 - down select (6/95) to PSI
 - cost (\$39.1M), including change control actions is about \$2M under budget
 - approved by NSF and contract awarded!!

Beam Tube

Characteristics

- » Arm Lengths 4km
- » Tube Diameter 4 ft
- » Initial Detector
 - 10⁻⁶ torr Hydrogen; 10⁻⁷ torr Water
- » Advanced Detectors
 - 10⁻⁹ torr Hydrogen; 10⁻¹⁰ torr Water
- » Quality Control
 - (materials, welding, cleaning, etc)

Status and Plans

- » Design Contract was with CBI
 - Final Design Report Accepted (6/94)
- » Qualification Test
 - 130 ft Section success (4/95)
- » Contract Options

LIGO Facilities Beam Tube

Characteristics:

- » length = 4 km (4 arms)
- » diameter = 4 ft
- > volume = 20, 000m³

Design Contract with CBI

- » Design report accepted
 - thin wall stainless spiral weld structure
 - 65 foot sections with bellow
 - quality control in material selection, welding, cleaning, etc
- » Qualification test -
 - 130 ft section assembled, cleaned, baked and tested -- achieved design

Construction contract

- » Negotiate option with CB&I, but be prepared to compete
- » Status -- final price agreed; negotiating detailed scope; contract soon.
- » Cost (~ \$40M) is about \$5M over budget

Beam Tube Enclosure

Figure 2.1-1 -- Cross Section of Design Baseline at Hanford

LIGO Detectors R&D Program

Sensitivity

- » main features of 40 m spectrum understood
- » monolithic test masses improve sensitivity

Demonstration Experiments

- » optical recombination demonstrated on 40 m
- » acquisition locking with LIGO controls
- » MIT phase noise experiments underway

Pre- [detector design freeze]

» Program testing directed at tasks that could effect design over the next two years

Post- [detector design freeze]

» Program directed at improved sensitivity; experience running an interferometer facility

R&D Program

Overview

- » Demonstration Experiments
 - Technical: Suspensions; Optics, Servos, ...
 - Sensitivity: Displacement, Phase Noise
- » Priorities for Detector Design Freeze
- » Operations: Reliability, Stability
- » Develop Advanced Techniques
 - Active Seismic Isolation

Progress and Plans

- » Optics, Test masses, Mirrors, etc
- » 40m Displacement Results

LIGO Detectors Lasers

- Working decision to switch to Nd:YAG lasers for LIGO
 - » Study initiated in May '95; study and discussion meetings during summer, decision in Sept '95
 - » YAG chosen for reliability and because it is the most direct path toward high power (improved sensitivity)
 - » Switch now to invest all our resources toward final laser type and to build optics at longer wavelength.
 - » Now developing plan to integrate into LIGO baseline
 - acquire low power Nd:YAG soon and stabilize
 - install in 40 m to test in interferometer
 - design/acquire laser with LIGO power and test
 - integrate into detector design
 - » official change control action when plan is developed and cost/schedule impact understood

LIGO Detectors Integration/System Eng.

- Science Goals for initial and improved detectors
- Establish Systems Requirements
 - » First draft document
- Modeling
 - » environment AVS
 - » end to end model underway
 - » lock acquisition, optics, etc
 - » help final design and understand performance
- Interfaces
 - » facilities, detector

LIGO Detectors Detector Implementation

- Detector baseline established for Costing (9/94). This baseline is 'consistent' with sensitivity goals.
- Detector requirements being established from sensitivity goals
- Detector Implementation Plan (1/95)
 - » Two Groups
 - interferometer (mechanical/optical systems)
 - control data systems (electronics, controls, data)
 - » Design over next two years (now underway)
 - design requirements for subsystems
 - interfaces
 - preliminary designs
 - » Development work
 - mirror coatings, etc
 - » Final design and construction

LIGO Status and Plans Conclusions

The LIGO Project

- » We are still growing rapidly and entering into major contracts
- » We are strictly building to cost
- » The coming year should see most major contracts established and actual construction of facilities well underway
- » technical considerations for civil construction and vacuum systems mostly in hand

Detector design

- » development and design phase
- » develop design and reconcile with requirements

Detailed site planning underway

- » staffing and organization
- » plan for installation, commissioning and operations
- Outside community being included, informed and organized

