Interferometry for Gravity Wave Detection

Peter Fritschel
MIT, LIGO Project
26 January 1996

Outline of talk

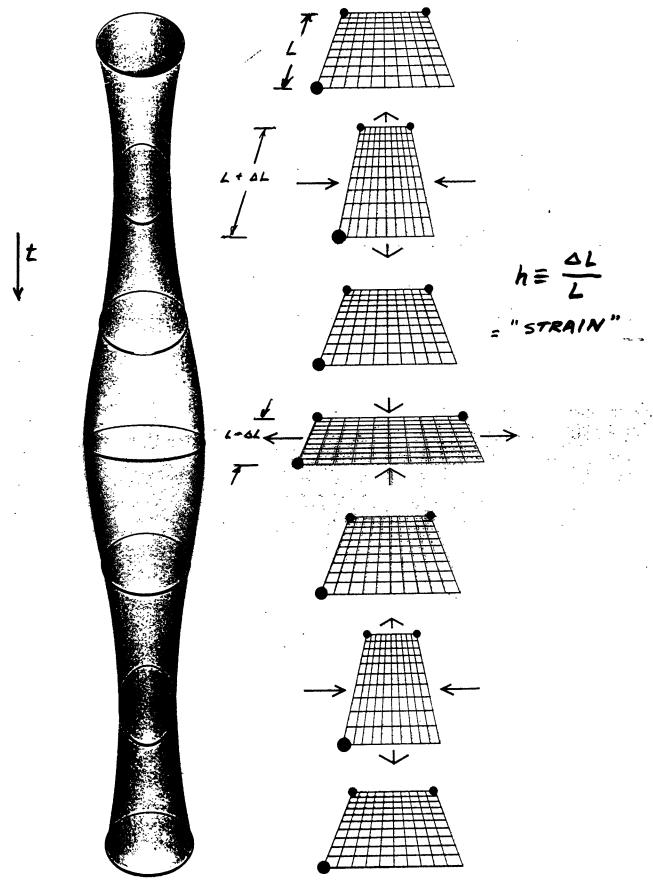
- salient features of GW's for detectors
- how interferometric detectors work
- limitations to sensitivity: physics of and solutions to noise sources

Nature of Gravity Waves

Assuming General Relativity

Any GW's impinging on earth are in weak, far field limit

$$g_{\mu\nu} \approx \eta_{\mu\nu} + h_{\mu\nu}$$


For particular choice of gauge, h satisfies

• Proper distance between two particles, $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\mu}$, is perturbed according to

$$\Delta s = \int_{0}^{y_0} \left| g_{yy} \right|^{1/2} dy \approx \left[1 + \frac{1}{2} h \right] y_0$$

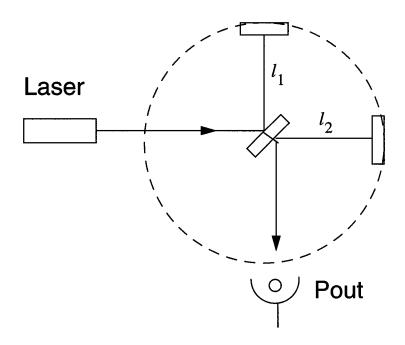
Net effect: variation in proper distance between free masses, proportional to GW amplitude and initial separation \rightarrow tidal force

EFFECTS OF GRAVITATIONAL WAVES are depicted for a rubber tube floating in space (left) and for a set of masses in a plane (right). Gravitational waves should distort the shape of any region of space they travel through. Here the waves move vertically.

Simple estimate of magnitude

Lowest order radiation term: quadrupole

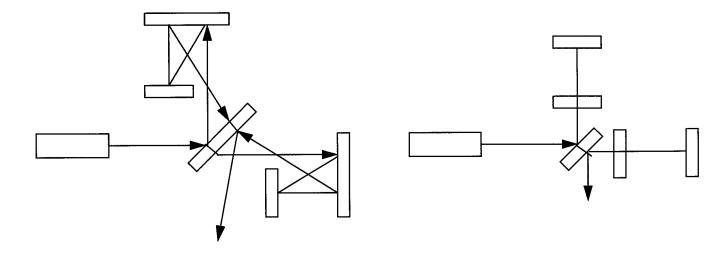
- field amplitude proportional to \ddot{g} , 2nd derivative of quadrupole
- or, non-spherical part of kinetic energy $\ddot{Q} \sim M \ddot{L}^2 \sim M v^2 \sim E_{kin}^{ns}$
- dimensional analysis leads to


$$h \sim \frac{G}{c^4} \left(\frac{E_{kin}^{ns}}{r} \right) \sim 10^{-20} \left[\frac{E_{kin}^{ns}}{M} \right] \left[\frac{10Mpc}{r} \right]$$

- h ~ 10⁻¹⁷ (our galaxy)
 - ~ 10⁻²⁰ (Virgo cluster)
 - ~ 10⁻²³ (cosmological distances)
- Sources
 - compact binary coalescence
 - supernovae
 - spinning neutron stars (pulsars)
 - cosmological: cosmic strings, early universe phase transitions
 - THE UNKNOWN

Basic idea of detection

Allow free test bodies to float inertially in spacetime, & continuously monitor the time of flight of light beams bouncing between them to sense changes in their proper separations

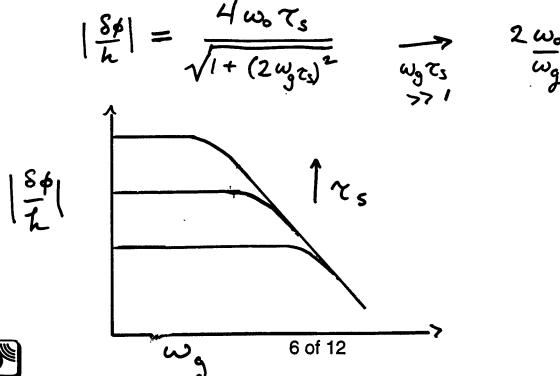

- Laser -illuminated Michelson interferometer is an ideal tool
 - broadband response to GWs of varying frequency, polarization, direction
- Obstacles:
 - free fall not practical
 - small absolute displacement, $\Delta x \sim 10^{-18}$ m, 10^{-12} of laser λ

More on interferometry

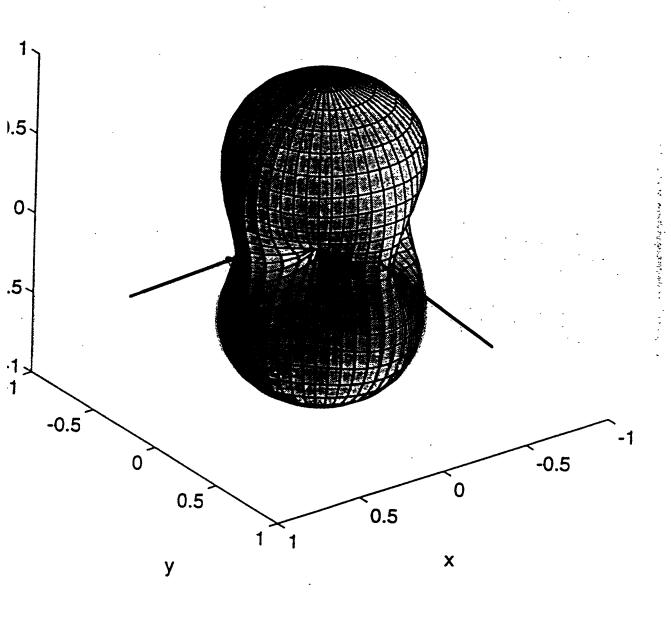
Interaction time with the GW

- signal δl , $\delta \phi$ grows as length of interferometer L grows, in the limit where $L > \lambda_{GW}$. \rightarrow L up to about 100 km
- not practical to make 100km straight path, so fold it; for the same δl , increase $\delta \phi$ by optical storage:

- Delay line
 - conceptually simple, but requires large mirrors
- Fabry-Perot
 - > compact, but imposes modes, resonance constraints on system
- 1 msec storage time for initial ground-based system
 - > gives optimum sensitivity around 100 Hz


Detector frequency response

When storage time is longer than half the GW period, the phase shift built up during one half-cycled is reduced during the next half-cycle

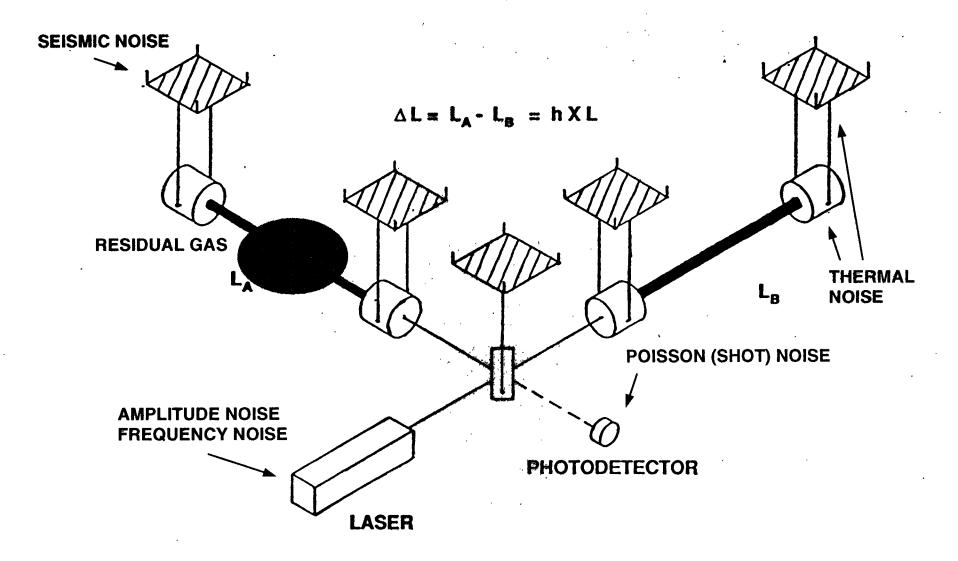

 To find response of a particular interferometer configuration to gw's of frequency f, consider that gw-induced modulation of optical phase produces sidebands on the light, at

$$\omega_0 - \omega_g$$
 , $\omega_0 + \omega_g$

- Calculate response of optical system to all three frequencies to determine frequency response to GWs
- For a Michelson with Fabry-Perot cavities in the arms, this leads to

ANGULAR RESPONSE

Limitations: types of noise


Sensitivity to GW depends on conversion of *h* to ϕ , and on ability to measure ϕ

Noise sources:

- natural division into
 - sensing noise (generally optical sources)
 - displacement noise (forces on test masses)
- fundamental vs. technical
- statistical characteristics:
 - stationary noise
 - quasi-stationary noise, changes on time scales of seconds
 - impulsive noise: time scale of GW events or shorter
 - periodic 'noise'
- length scaling
- frequency dependence

SCHEMATIC INTERFEROMETRIC DETECTOR

"DISPLACEMENT" NOISE

"READOUT" NOISE

Fundamental limits

Shot or Poisson noise

• intensity at ifo output is a function of arm phase difference:

$$P_{\text{out}} = \frac{P_{\text{in}}}{2} (1 - \cos [\delta \varphi])$$

- maximum slope: $\frac{dP}{d\delta \varphi} = \frac{P_{in}}{2}$
- uncertainty in intensity due to counting statistics: $\delta P_{out} = \sqrt{2\hbar vP}$
- can solve for equivalent strain: $h_{\text{shot}} = \frac{1}{|\delta \phi/h|} \sqrt{\frac{2hv}{P_{\text{in}}}}$
- Note: scaling with $1/\sqrt{P_{\rm in}}$; gives requirement for laser power

Quantum noise

Radiation Pressure

- quantum-limited intensity fluctuations anti-correlated in two arms
 - > results from vacuum fluctuations entering output port
- photons exert a time varying force, with spectral density

$$\tilde{f} = \sqrt{\frac{2\pi h P_{\rm in}}{c\lambda}}$$

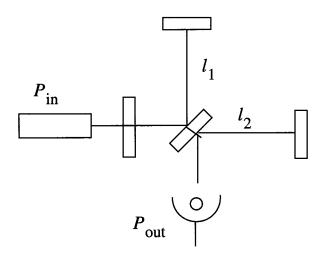
results in opposite displacements of EACH of the masses:

$$\tilde{x}(f) = \frac{1}{mf^2} \sqrt{\frac{hP_{\rm in}}{8\pi^3 c\lambda}}$$
, or strain $h = \frac{\delta l}{l} = \frac{2\tilde{x}}{L}$

ullet NOTE: scaling with $\sqrt{P_{
m in}}$, and with interferometer arm length ${\it L}$

total readout, or quantum noise

- quadrature sum $h_{\rm q} = \left(h_{\rm shot}^2 + h_{\rm rad\ press}^2\right)^{1/2}$
- frequency dependence according to ifo configuration, but
- always a minimum for a given frequency as a function of Power
- for simple Michelson, $P_{\text{opt}} = \pi c \lambda m f^2$; later limitation, not now



Lowering shot noise: recycling

Problem: insufficient laser power

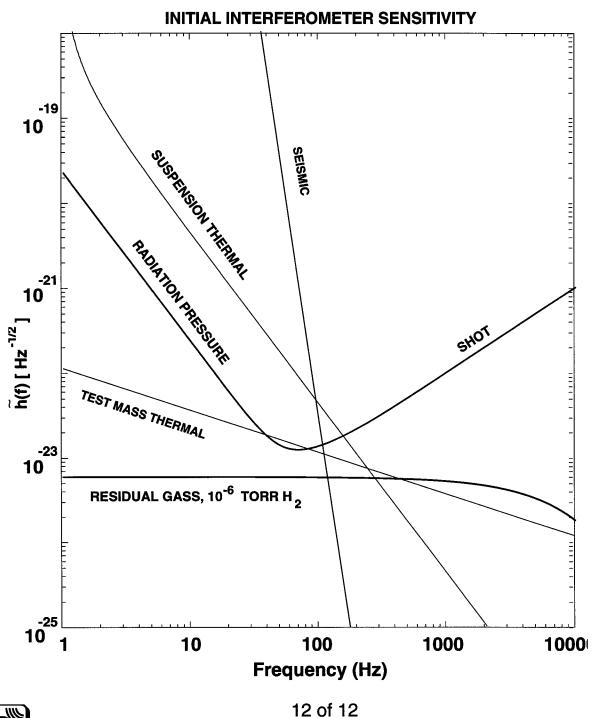
- sensitivity goal requires shot noise from ~100 W on beamsplitter
- suitable lasers produce ~10 W, ~5W at the ifo input

Solution: make a resonant cavity out of the interferometer and an additional mirror at the input

- ifo output port is operated at the 'dark fringe'
- then nearly all the input power is reflected back towards laser (when optical losses are low)
- factor or ~30 increase in effective power possible
- improves the shot noise limited sensitivity by $\sqrt{\text{gain}} \approx 5-6$

Displacement noise

Fundamental


- Thermal noise: mechanical systems excited by thermal environment
 - >> nearly all of each mode's kT's worth of thermal energy is at the resonant peak, but small fraction is distributed in frequency
 - \Rightarrow lower mechanical loss \rightarrow lower thermal motion out-of-resonance
 - >> Below resonance: internal modes of test masses
 - >> Above resonance: pendulum suspension
- Gravity gradients
 - >> time varying mass distributions in the vicinity of the test masses produce fluctuating forces on them
 - >> surface seismic compressional waves, weather, moving objects (humans!)
 - >> places limit on lowest frequencies detectable by ground based detectors of a few Hertz

Both these noise sources scale with arm length L

Thermal noise leads to LIGO 4km length

Initial LIGO sensitivity

