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Outline of talk

® salient features of GW’s for detectors
® how interferometric detectors work

® limitations to sensitivity: physics of and solutions to noise
sources
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Nature of Gravity Waves

Assuming General Relativity
® Any GW’s impinging on earth are in weak, far field limit
Suv =My * huv

® For particular choice of gauge, h satisfies
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® Proper distance between two particles, ds” = gwdx”dx”, is

perturbed according to
Yo
1
— 1/2 ~ 2
As =[],/ dy = [1+2h]y0
0

Net effect: variation in proper distance between free
masses, proportional to GW amplitude and initial
separation — tidal force
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cted for a rubber tube floating in
Gravitational waves should distort

hey travel through. Here the waves move vertically.
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Simple estimate of magnitude

Lowest order radiation term: quadrupole

® field amplitude proportional to ¢, 2nd derivative of quadrupole
® or, non-spherical part of kinetic energy ¢ - mi’~mv2 -,

® dimensional analysis leads to

ES E.
G| Tkin -20| "kin | [10Mpc
= ey
® h~107" (our galaxy)

~ 1020 (Virgo cluster)

~ 1023 (cosmological distances)
® Sources
- compact binary coalescence
— supernovae
= spinning neutron stars (pulsars)
— cosmological: cosmic strings, early universe phase transitions

— THE UNKNOWN
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Basic idea of detection

Allow free test bodies to float inertially in space-
time, & continuously monitor the time of flight of
light beams bouncing between them to sense
changes in their proper separations
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® | aser -illuminated Michelson interferometer is an ideal tool

— broadband response to GWs of varying frequency,
polarization, direction

Obstacles:

— free fall not practical

— small absolute displacement, Ax ~ 10718 m, 10712 of laser A

S 4 of 12

LIcO-G60105~ 00-D



More on interferometry

Interaction time with the GW

® signal &1, 8¢ grows as length of interferometer L grows, in the
limit where L»x,, . — L uptoabout100km

® not practical to make 100km straight path, so fold it; for the
same &1, increase s¢ by optical storage:

JHH
C 1 1
L1

® Delay line

> conceptually simple, but requires large mirrors
® Fabry-Perot

> compact, but imposes modes, resonance constraints on system
® 1 msec storage time for initial ground-based system

> gives optimum sensitivity around 100 Hz
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Detector frequency response

'When storage time is Ionger than half the GW
period, the phase shift built up during one half-
‘cycled is reduced during the next half-cycle

® To find response of a particular interferometer configuration to

gw’s of frequency f, consider that gw-induced modulation of
optical phase produces sidebands on the light, at

O)O—O)g , (Dof(Dg

® Calculate response of optical system to all threae ‘ 316,
determine frequency response to GWs R
® For a Michelson with Fabry-Pemlcawtxes mihewm m

leads to 4
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Limitations: types of noise

Sensitivity to GW depends on conversion of hto |
®, and on ability to measure ¢

Noise sources:

® natural division into
— sensing noise (generally optical sources)

— displacement noise (forces on test masses)
® fundamental vs. technical
® statistical characteristics:

— stationary noise
— quasi-stationary noise, changes on time scales of seconds
— impulsive noise: time scale of GW events or shorter
= periodic ‘noise’
® length scaling
® frequency dependence
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SCHEMATIC INTERFEROMETRIC DETECTOR

SEISMIC NOISE
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Fundamental limits

Shot or Poisson noise

® intensity at ifo output is a function of arm phase difference:

Pin
P = —2—(1 — cos [89])

out

aPp F;

® i - ar _
maximum slope: 59

_in
2
® uncertainty in intensity due to counting statistics: 3, = V2AvP-
® : . . 1 Zhv
can solve for equivalent strain: r, = —— |~
|6¢/RBlN "in

® Note: scaling with 1/ [p, ; gives requirement for laser power
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Quantum noise

Radiation Pressure

® quantum-limited intensity fluctuations anti-correlated in two
arms

> results from vacuum fluctuations entering output port

® photons exert a time varying force, with spectral density

- 21thPin
f= cA

® results in opposite displacements of EACH of the masses:

hP.
)~c(f)=—1— 1n =8_l_2x

ok =
mf2N8n3ch | or strain [ L

® NOTE: scaling with [p, , and with interferometer arm length L

total readout, or quantum noise

® quadrature sum ;= (hszhot+h2 )1/2

rad press

® frequency dependence according to ifo configuration, but

® always a minimum for a given frequency as a function of Power

® for simple Michelson, P = rmcAmf? ; later limitation, not now
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Lowering shot noise: recycling

Problem: insufficient laser power

® sensitivity goal requires shot noise from ~100 W on
beamsplitter

® suitable lasers produce ~10 W, ~5W at the ifo input

Solution: make a resonant cavity out of the
interferometer and an additional mirror at the input
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® ifo output port is operated at the ‘dark fringe’

in

1 1

® then nearly all the input power is reflected back towards laser
(when optical losses are low)

® factor or ~30 increase in effective power possible
® improves the shot noise limited sensitivity by Ygain ~ 5-6
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Displacement noise

Fundamental

® Thermal noise: mechanical systems excited by thermal
environment

»> nearly all of each mode’s kT’s worth of thermal energy is at
the resonant peak, but small fraction is distributed in frequency

»> lower mechanical loss — lower thermal motion out-of-
resonance

»> Below resonance: internal modes of test masses
>> Above resonance: pendulum suspension

® Gravity gradients

»> time varying mass distributions in the vicinity of the test
masses produce fluctuating forces on them

»> surface seismic compressional waves, weather, moving
objects (humans!)

»> places limit on lowest frequencies detectable by ground
based detectors of a few Hertz

Both these noise sources scale with arm length L
Thermal noise leads to LIGO 4km length
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Initial LIGO sensitivity

INITIAL INTERFEROMETER SENSITIVITY
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