

WORK PLAN DISCUSSION

Topics

- BSC Stack Schedule
 - Overview Of Major Tasks Completed
- Technical Baseline For BSC
 - Stack Geometry
 - Downtube/Optics Plate
 - Scheduled Activities
- Damped Metal Spring Concepts
- SEI Task Elements
 - Base Support Concept
 - Design Issues
- Proposed Work Plan Modifications
 - New Work Plan Structured To Provide An Integrated SEI Design
 - Schedule Discussion Interwoven With Baseline Presentation

COMMENTS ON GENERAL STATUS

- Major Tasks Completed
 - BSC Stack Performance Predictions
 - VITON And Two Damped Metal Spring Concepts
 - Reflects Latest Downtube Structural Design
 - BSC Structural Modeling(FEA)
 - Simplifications Made To Basic Structure
 - Conceptual Design Layout Of BSC
 - Downtube/Optics Plate
 - Leg Elements
 - Base Support Structure
 - BSC SEI Design Initiated
 - Initial FEA Of Base Support Structure
 - Vacuum Interfaces(Hopefully Solved)
 - Key Assembly Steps Defined For BSC Stack
 - Preliminary Predictions Of BSC SEI Performance
 - Provides Insight To Dynamic Stiffness
 - Base Support, Piers, and Actuators
 - FEA Of HAM Optics Plate

HIGHLIGHTS OF PROPOSED ACTIVITIES

- Expand Engineering Design To Include SEI For Both The BSC And HAM
 - Activities Would Encompass Structural And Mechanical Design Of All Related Components
 - Construction Drawings
 - Participate In Prototype Testing
 - Isolation Performance Predictions
 - Stack Performance
 - Effects Of Base Support, Actuators, And Piers
 - Manufacturing Liaison
- Design And Development For SEI Coarse And Fine Actuators
 - Provide Final Construction Drawings, Selection Of Commercial Components
 - Participate In Prototype Testing (Where Applicable)
 - Manufacturing Liaison

BSC STACK BASELINE DESCRIPTION - VITON SPRINGS

- BSC Stack
 - Four Leg Elements, SS Material
 - Standard VITON Spring Concept
 - 116 Springs
 - One Piece AL Downtube Structure

- Total System Mass 2813 kg
 - Downtube 376.1 kg
 - Leg Elements 2210 kg
 - Payload 226.9 kg
 - (6200 lbs vs Original 13499 lbs, And 270 Springs)
- Why 4 vs 3 Leg Stack?
 - Performance Differences Are Small
 - Downtube Shorter By ~33 %, Stiffer Structure
 - Less Mass, When Allowance Made For Downtube Length Differences
 - Loads On Base Support Structure More Symmetrical
 - Cost Not Significantly Different

WM-LIGOWP- 4

Page 2

BSC Stack Layout

"Complete" System Modeling

HYTEC

Support Flexibility

Two rigid bodies Two sets of four 3D springs 12 d.o.f.

TEC

BSC SEI BASELINE PERFORMANCE

LIGO

Performance VS Spring Design

• T_{zz} performance determined by spring design

HYTEC

LIGO PROJECT TUBULAR SPRING + DAMPING CORE

Concept

- Outer tube designed to take the static load (core: creep, low modulus)
- Design of hollow tubular spring:
 - BeCu tube (age hardened after coiling)
 - 9mm OD x 0.5mm Wall, mean coil diameter ~50mm.

HYTEC

Net Spring Damping VS Core Properties

COILED CLD SPRING

Concept

COILED CLD SPRING

Design

- Outer tube: Ph Bronze
 (high yield, low relief t°)
- Inner tubes: Aluminum
 (pliable)
- Viscoelastic Layer: Soundcoat DYAD 606 (thick but stiff, high loss 105%)
- Design Optimization:
 - adjust cross section
 & coil geometry
 - maximize loss factor

HYTEC

Expected Performance

- Static Load Capacity: $P_{max} = 445 \text{ N} = 100 \text{ lbs}$
- Dynamic Stiffness and Damping

- Characteristic deflection @ 35Hz: $\delta_{max} = 15 \text{ mm}$
- Resonance: $f_1 = 400 \text{ Hz}$

COILED CLD SPRING

Review062896 - Slide 11

Manufacturing

- swage AI tube sections on rubber core
- wrap with viscoelastic sheet (adhesive?)
- insert in Ph.Br. tube and swage (adhesive?), stress relief
- coil, weld caps, stress relief

Prototyping & Testing

Rubber Filled PhBr Coils

Coiling specimens made from 4 different tempers of PhBr (annealed, 1/4 hard, 1/2 hard, 3/4 hard), with solid rubber fill (no CLD layers)

- manufacturing

- PhBr tube cracking VS temper
- Spring-back
- Partial stress relief (temperature, duration)
- Static axial load capacity
 - Permanent set
 - End coils & seat design
- Multi-Layer CLD Tube
 - manufacturing
 - Alignment & spacing of inner tube sections
 - Swaging tolerances
 - Visco layer wrap / adhesives

Prototyping & Testing (continued)

Coiled CLD Spring

LIGO

- Manufacturing
 - Inner tube wrinkling
 - Breakage of adhesive bond, gaps
 - Vacuum caps
 - · partial stress relief
- Static load capacity & creep
 - breakage of adhesive bond
- Stiffness, Damping, Resonance
 - single stage, 3 springs, modal tests (in air)
 - stack performance update
- Creak under load
 - loaded spring hung in vacuum chamber, monitor microphone signals

Prototyping & Testing (continued)

- Acoustic transmission
 - spring in vacuum chamber piezo exciter on one face plate, microphone measurement on other
- Small amplitude damping & stiffness testing (?)

I IGO PROJECT

LIGO SEMI-CIRCULAR CLD LEAF SPRING

LIGO SEMI-CIRCULAR CLD LEAF SPRING

Expected Performance

- Static Load Capacity: $P_{max} = 556 \text{ N} = 125 \text{ lbs}$
- Dynamic Stiffness and Damping (NASTRAN)

- Characteristic deflection @ 35Hz: $\delta_{max} = 6.2 \text{ mm}$
- Resonance: $f_1 = 366 \text{ Hz}$

LIGO

LIGO SEMI-CIRCULAR CLD LEAF SPRING

Manufacturing

- Stamp inner shell
- Cut & Bend outer shell
 & blades
- Age harden all BeCu
- Cut visco sheets
- Assemble

HYTEC

IGO SEMI-CIRCULAR CLD LEAF SPRING

Prototyping & Testing

- Design Refinement
 - Static load capacity, permanent set (in weld area)
 - Adjust unloaded shape s.t. tip is horizontal under load
 - Design of base clamp and Viton pad & attachment
- Prototype CLD springs
 - Static load capacity & creep
 - Stress concentrations, weld resistance, local buckling
 - Stiffness, Damping, Resonance
 - Single stage, 3 springs, modal tests (in air)
 - Stack performance update
 - Creak under static load
 - Loaded spring hung in vacuum chamber, monitor microphone signals

Prototyping & Testing (continued)

- Acoustic transmission
 - Spring in vacuum chamber, piezo exciter on one face plate, microphone measurement on other
- Small amplitude damping tests (?)

BSC STACK DESIGN (VITON SPRINGS)

Side View Of Downtube

Dim cm's(in)

- Structure Weight 376 kgs (829Lbs)
- 1.25 m Dia Optical Table
 - 26.67 cm (10.5")Thick Sandwich Table Structure
 - 1.27 cm (0.5") Thick Facings
 - 227 kg Payload
- Upper Support Welded Box Beams
 - 20.32 cm (8") Box Beams
- Downtube
 - Length 89.65 cm (35.30")
 - Dim Subject To Change
 - 76.59 cm (30.15") OD
 - 1.587 cm (0.625") Wall

BSC STACK DESIGN (VITON SPRINGS)

Optics Plate Construction

Dim cm's(in)

- Initial Vendor Survey
 - Brazed Structure Too Large
 - Uncertainties With Brazing Thick Plates
 - Al Honeycomb Sandwich Required Adhesive Bonding
- Sandwich Plate Revisions
 - Significantly Reduced Number Of Reinforcing Gussets
 - Improved Access For Welding Gussets
- Optics Plate Welded To
 Downtube
 - Dynamic Stiffness Of Overall Assy Within Design Goals

BSC STACK DESIGN (VITON SPRINGS)

• FEA Results With "Free-Free" BC

- First Four Modes
 - 355, 356,380, And 382 Hz,
- Modes Involve Localized Bending And Twisting Of Cross Beams At Top
 - Box Beams Recessed In Tube, Tube End Distorts
- No Evidence Of Distortion In The Optics Plate In This Frequency Band

Dim cm's(in)

WM-LIGOWP- 7

BSC BASE SUPPORT DESIGN (VITON SPRINGS)

- AL Sandwich Platform
 - Supports Stack Leg Elements
 - Mounts To Stainless Steel Cross Beams
 - Provides Increased Stiffness (Dynamic) To The Cross Beams
 - Structure 94.4 kgs(208 Lbs)
 - Material Thickness
 - Top Plate 1.27 cm(0.5")
 - Bottom Plate .9525 cm(0.375")
 - Sandwich Ribs 0.635 cm(0.25")
 - Cross Beams SS Tubes
 - 32.38 cm (12.75") OD
 - 0.953 cm (0.375") Thick Wall
 - Tubes 549.5 kg (1211 Lbs)

BSC STACK CONSTRUCTION

BSC Stack With Cross Tubes

Downtube Assembly Construction

- Steps At Fabricators
 - 1st -Weldment And Machining Of Downtube/Optics Plate And Base Support Structure
 - 2nd -Place Finished Base Support Structure Over Downtube/Plate Assy
 - 3rd -Upper Downtube Cross
 Beams Inserted Into Downtube
 Shell Recess, And Then Welded
 - Final -VITON Spring Pads On Upper Box Beams Are Machined Parallel To Optics Plate Surface
- Experimental Hall
 - Assembly Installed Into Tank And Bolted To Cross Beams
 - Leg Elements Placed On Base Support Structure
 - Upper DT Box Beams Rotated Into Place Over Viton Springs

BSC BASE SUPPORT DESIGN

- BSC Base Support Top View
 - Vented Sandwich Structure
- BSC Base Support Side View
 - Machined Mounting Surfaces To Interface With Cross Beam Tubes

Dim cm's(in)

WM-LIGOWP- 11

BASE SUPPORT DYNAMIC STIFFNESS STUDY

Base Support FEA Results

- Natural Frequencies Quite Dependent On Outer Support Beam End Conditions
- Present End Conditions Intended To Simulate Actuator Connections
 - Uncertain To What Extent The Present BC's Are Realistic
 - Further MATLAB Modeling May Be Useful In Defining Req'd Stiffness
- 1st Mode Too Close To Machinery Vibration Modes
 - Desire Much Higher Frequency, Or A Slight Shift Lower
 - Modeling Of New Cross Beam/Outer Support Beam Connection May Lower Frequency Sufficiently (Or Too Much?)
- FEA Modifications
 - Update For New Connection
 - Offset Centerlines
 - Revised Beam Cross-Section
 - Rectangular To Provide Access To Ports
 - Distributed Reaction at Box Beam Face
 - Simulate Actuator Connection Differently
 - Look Into Alternative Reinforcements Of Base Support/Cross Beams

BSC STACK/BASE SUPPORT DESIGN

• BSC Stack Top View

- Support Design Activities/Issues
 - Location Of Piers Relative To Outer Support Beams
 - Clearance Of Chamber Ports
 Adjacent To And In-Plane With
 Outer Support Beams
 - Vacuum Penetration Of Cross Beams
 - Coarse Actuator Movements Of Cross Beams
 - Outer Support Beams Al Mat.
 - 36.83 cm (14.5") Sq. Box Beams¹
 - 1.91 cm (0.75") Wall
 - Beams 441.5 kg (includes end caps)
 - Mass Summary kg
 - Stack 2813
 - Base 757.5
 - Outer Beams 441.5
 - Total 4012 (8842 lbs)

1) Under Revision

BSC STACK SUPPORT DESIGN

- Current Design Studies
 - Update FEA For New Tube/Cross Beam Structural Interface
 - Vacuum Interface
 - Bellows Design
 - Cross Beam Structural Support
 - Misalignments Causing Gaps At Mounting Interfaces
 - Concept To Eliminate Bolted Up
 Strains
 - Clearance For Tank Ports
- Next
 - Actuator Layouts
 - Pier Support

BSC STACK DESIGN

Cross Beam Vacuum Interface

- Design Issues
 - Sizing Welded Diaphragm
 Bellows To Achieve Low Stiffness
 - Minimize Transverse Forces Into Actuator Components
 - Vacuum Seal For Cross Beam
 - Structural Connection To Outer Support Beams
 - Tolerance Build-up In Mating Faces
 - Minimize(Hopefully Eliminate) Built In Assembly Stresses
 - Maintain Structural Rigidity

BSC STACK DESIGN

Cross Beam Connection Concept

- Objectives
 - Provide Moment Connection
 - Allow For Reasonable Fabrication Tolerances
 - Correct For Compound Angles
 Formed By Slightly Skewed Cross
 Beams
 - Secondly, Reduce Mechanically Induced Strains
 - Result Of Contact Planes Being Slightly Skewed
 - Spherical Washer Intended To Compensate For Skewed Contact Planes

Page 3

Page 5

Page 6

SEI Fine Actuator Design Objectives

- SEI Fine Actuator Spec's(SEI/DRD)
 - X Translation
 - +/- 100 micron Travel
 - Resolution ~ 1 micron
 - Response ~0.3 micron/minute
 - Rotation <0.5 mrad
 - Y,Z Translation And Rotation, Not Required
- Objectives
 - Single Stage Translation, 1 micron step Resolution, With Negligible Coupling In Y,Z(TBD)
 - No Vibrations In Support Beams In Excess Of Facilities Vibration Requirement
 - Tolerable Stick-Slip Or Impulsive Response On Stack Support Beams(TBD)
 - Total Driven Mass(TBD),

SEI Fine Actuator Design Issues

- Pure Translation Of A 4 Ton Mass, Without Coupled Motion
 - Position Corrections Made In Laser Locked Mode
 - Precise Motion In Direction Normal To Suspension System
 - Flexible "Link", Capable Of Carrying Entire Structural Mass
 - High Rigidity In All Directions
 - Even During Actuation
 - Stick/Slip In Actuator Parts
 - Coupled Strain In Coarse Actuator Elements
 - May Cause Sudden Bursts Of Motion
- Initial Steps
 - SEI Overall Performance Predictions
 - Back-out Effects Of Actuator Stiffness On Stack Performance
 - Configure Flexure Support
 - Work Out Potential Coupled Motions
 - Size Actuator To Overcome Extraneous Forces, e.g., Bellows Transverse Forces
 - Assess Dynamic Stiffness
 - Include Actuator Stiffness Components
 - Update SEI Performance Predictions

SEI Coarse Actuator Design Objectives

- SEI Coarse Actuator Spec's (SEI/DRD)
 - X,Y, And Z Translation
 - +/- 0.5 cm Travel
 - Resolution 100 microns
 - Z Rotation
 - +/- 4 mrad (Perpendicular To Beam Axis)
 - Resolution +/- 0.1 mrad
 - X Rotation < 0.5 mrad
- Objectives
 - Correct For Long Term Drift
 - Single Mechanical Design Compatible With Both BSC And HAM
 - Stiffness Sufficient To Resist Squirm Loads Imposed By Bellows
 - Stable And Stiff Elements, Both Laterally And Vertically

SEI Coarse Actuator Design Issues

- Stability Of Linear Translation Stages
 - Preload Ball Bearing Stages To Eliminate Unexpected Motions
 - Coordination Of Motion At Four Points
 - Alignment Of Stages
 - Uniform Rotation Of Large Body About Vertical Axis
- Vertical Lift At Four Points
 - Lead Accuracy Of (Ball) Lead Screws
- Initial Steps
 - Configure Mechanical Arrangement Using Commercial Precision Components
 - Work On Alignment And Tracking Of Multiple Stages Making Up Single
 Degree Of Movement
 - Assess Stiffness Of Combined Actuator Stages
 - Update SEI Performance Predictions
 - Develop Alternative Concepts Where Commercial Components Are Not Adequate

Component Testing

- Actuators
 - Prototyping Of Fine Actuator Concept Strongly Recommended
 - Demonstrate Final Concept
 - Flexures (?)
 - PZT Drive (?)
 - Smoothness/Resolution
 - Stiffness
 - Prototyping Of Coarse Actuator Concept Recommended Also
 - Evaluate Stacking Of Components
 - Demonstrate Precision
 - Evaluate Steps Taken To Eliminate Alignment Issues

WORK PLAN REVIEW SUMMARY

• Schedule

- Overall Schedule To Produce An Integrated Design Is Very Tight
 - PDR For BSC And HAM By 1/17/97 Includes Concept Definition Of Actuator System
 - PDR Milestone Also Includes Decision On Damped Metal Spring
 - Results For Coiled Spring Should Be Available
 - Development Tests Of Leaf Spring Most Likely Still In Process
 - Numerous Issues To Investigate Before Ready For PDR
- Damped Metal Spring Stack Design
 - Backward Compatible To VITON Spring Geometry
 - VITON Stack Design Is Not Forward Compatible With Alternative Spring Designs Requiring Increased Separation Between Layers
- Design Drawings
 - Suggest Electronic Files For Each Design (VITON/Coil/Leaf)
 - Downtube And Leg Element Geometry File For Each Design
 - Would Accommodate Different Spring Lengths, Shimming, Etc..
 - Facilitate Conversion To Alternative Design At PDR