BEAM TUBE BAKEOUT

W. E. ALTHOUSE

AUGUST 20, 1996

BAKEOUT PLAN DISCUSSION

- Objectives
- Scope of bakeout tasks
- Preliminary requirements
- Configuration
- Bakeout plan
- Responsibilities, subcontracts and staffing
- Time line
- Technical/cost issues
- Schedule
- Cost summary

BAKEOUT OBJECTIVES

 Reduce H₂O, CH₄, CO, CO₂, etc. outgassing to achieve partial pressure less than LIGO goal level (10⁻¹⁰ torr for H₂O)

>>allows setting an upper limit on leaks at the LIGO specification level (<10⁻⁹ torr-L/s) using air signature method (cost of traditional He tracer method on unbaked beam tube would exceed cost of bakeout)

 Reduce outgassing of contaminating hydrocarbons to minimize risk to interferometer optics

SCOPE OF BAKEOUT TASKS

- Design requirements, design definition and trade studies
 - >> Design Requirements Document
 - >>Special attention to boundaries and interfaces
- Specifications and subcontract SOWs
- Thermal insulation
- Heating power and control
- Pumping and instrumentation
- Data acquisition and logging
- Setup, bake, moving to next module
- Data analysis
- Safety

PRELIMINARY REQUIREMENTS

- T_{min} (cold spot) = 130°C, T_{max} (hot spot) = 170°C (except at bellows)
- $T_{average} = 150^{\circ}C \pm 5^{\circ}C$
- T > 145°C for 30 days or H₂O outgassing @ $150°C < 10^{-11}$ torr L s⁻¹ cm⁻²
- Pumping speed for $H_2O > 1,500 \text{ L/s} \times 9$ until cooled down to ambient temp. [P(H₂O) < 10⁻¹² torr after cool down]
- Pumping speed for $H_2 > 500 \text{ L/s}$ (1 point) [P(H_2) < 10⁻⁵ torr @ 150°C]
- Monitoring during bake:
 - **)** RGA (low sensitivity), 1 point
 -))Temperature monitors:
 - 16×2 ends to probe special points around module ends = 32 channels
 - 4×9 ports to probe tube wall, special points at pump ports = 36 channels
 - 28 channels TBD for total of 96 channels

QT TEMPERATURES

Typical temperatures on the beam tube and support in the middle of the bake

02-26-1995 00:00:21,

TE 31 N end center line	141.5,
TE 32 N support NE stiffener	138.9,
TE 33 N support N Plate	143.0,
TE 34 N support SW Kicker	65.3, * not near tube
TE 35 N support S Plate	136.1, MINIMUM
TE 36 N support SE Kicker	68.5, * not near tube
TE 37 22b tube top center	152.0,
TE 38 22b top stiffener	150.5,
TE 39 Flex support stiffener	143.2,
TE 40 Bellows ins conv top	171.2, MAXIMUM
TE 41 Bellows outs conv top	164.8,
TE 42 22a bottom center	146.9,
TE 43 22a bottom stiffener	148.3,
TE 44 S support NW stiffener	145.8,
TE 45 S support NW plate	147.8,
TE 46 S support NW kicker	82.9,
TE 47 S support SE plate	141.6,
TE 48 S support SE kicker	52.1, * not near tube
TE 49 S support W Beam	137.8,
TE 50 S end head center	146.3,

waterbake.f model for beamtube bake at 150C. Liquid Nitrogen traps at the 10 inch ports every 250 meters., F = 2500 liters/sec/port Model parameters: T0 = 9000K, R = 0.7, σ = 45 monolayers at t = 0

BAKEOUT CONFIGURATION

- Inherit beam tube modules already rough-pumped after acceptance testing from CBI
- Tube insulation:

>>Commercial fiberglass duct insulation

>>Nominal 6" (2×3 " layers; single, upper layer over bellows)

- Insulate end regions, 48" gate valves, 10" pump ports, pumps and RGA with pre-engineered portable heater blankets like (identical to?) those furnished by PSI for Vacuum Equipment bake
- Heating mode:

>> Resistive heating with DC current (1750 A nominal) through tube walls

>>Use CBI plan? (3 sets of parallel DC welding power supplies, 35 VDC max)

• Control:

>>Manual ramp-up, 10°C steps

>> Single-point control temperature sensors (independent of monitor system) for each heater section

CONFIGURATION (con'd)

- Temperature monitoring: stand-alone 100-point temperature data acquisition with data logging, display, alarms and single control output (switch closure)
- Bake pumping and vacuum monitoring:
 -))1 ea. 500 L/s turbo

>>9 ea. 10" cryo (refrigerator) pumps

>>One low-sensitivity RGA with data logging and display

>> Dedicated during setup, bakeout and cool down

• Post-bake pumping and vacuum monitoring:

>>Independent, cleaned and pre-baked 500 L/s turbo

>>Cleaned and pre-baked high sensitivity RGA with LN₂ trap

>>8 more RGAs standing by for leak localization, if necessary; centralized data logging and display

>>3 ea. 50 L/s turbo portable pump sets and separate portable heater blankets with controllers for setup

CONFIGURATION (CON'D)

• Power source:

- >> Temporary transformers connected to existing 13 kV line
-) Average DC power during bake = 535 kW (including return lead losses), demand \approx 900 kVA

>>2 sets of auxiliary transformers required to power pumps during cool down and then post-bake equipment while simultaneously setting up next module

DCN/DESCRIPTION

PUMP PORT HARDWARE

BAKEOUT PLAN

- Acquire additional equipment so that bakeout can be conducted without interference with CBI and PSI installation activities
- Schedule bakeouts so that on-site LIGO staff can handle setup and execution
- Conduct first module bakeout to:

>> Validate insulation, heating and pumping designs

>>Evaluate beam tube mechanical behavior during bake

>> Shakedown the setup, bakeout and post-bake procedures (and maybe the post-bake leak localization and repair procedures)

- Iterate procedures and designs as needed
- Bake 3 remaining modules, ship equipment to other site, and bake 4 modules

RESPONSIBILITIES, SUBCONTRACTS

• LIGO Systems Engineering:

- >> Perform system design and trade studies; prepare Design Requirements Document
- >>Prepare conceptual, preliminary and final (detailed) designs, and present reviews
- >>Prepare specifications and procedures
- >>Procure pumps, RGAs (with data acquisition); design, procure and assemble vacuum hardware

>> Place and oversee subcontracts for insulation, heater blankets, temperature monitoring system, DC power, AC power

- >>Pre-installation checkout and acceptance of purchased and subcontracted equipment
- Subcontracts:
 - >> Design, fabrication and assembly of temperature monitor data acquisition system
 - >> Fabrication of portable heater blankets and controls (use PSI specs/drwgs; use same supplier?)
 - >>Design, fabrication and off-site assembly of DC power source, cabling, connections and controls
- Local insulation contractor: purchase, prepare and install beam tube insulation
- Local power company: furnish, install and connect temporary transformers for primary AC power

RESPONSIBILITIES (con'd)

- Local electrical contractor: install and connect DC power source and auxiliary AC power for pumps, instrumentation and controls
- LIGO WA and LA on-site staff:
 - >>Install temperature monitors and setup temperature monitoring system
 - >>Supervise contractor installation of insulation, AC power and DC power
 - >>Install pumps and bake-monitor RGA
 - >>Checkout bakeout setup
 - >>Conduct bake and cool down
 - >> Remove bakeout pumps/RGA and install post-bake pump/RGA
 - >>Evaluate post-bake condition
 - >>Locate and arrange repair of leaks if needed
- On-site staffing requirements:
 - >> ~ 2 technician FTEs for equipment installation, checkout and removal
 - >>~ 4 technicians, 1.5 m-yr. per site for 1-person-24 hr. bake monitoring

LIGO SITE TECHNICIAN STAFFING

From Ops. Plan, LIGO-M950020-01-M

BAKEOUT TIMELINE - FIRST MODULE																							
WEEKS		1-	4			5-8		9	-12		13	-16		17-	20								
Install temperature monitors																							
Install insulation				-	-											_	-	LI	GO	Site	e Si	aff	
Install AC power																-	-	Co	ontr	act	or		
Install DC power, controls	-																						
Install pumps, RGA																							
Install heater blankets, controls																							
Cable, setup temp. data acq.																							
Checkout setup																							
Heat to bake temperature							-																
Bake							-			_													
Cool down										-		-											
Remove pumps, install postbake equip., bake connections													-										
Evaluate performance, iterate pro- cedures															_								

SCHEDULE

DESIGN ACTIVITIES

• Design requirements and conceptual design:

>>Document design and performance requirements, review BTD and QT experience, develop complete conceptual design, recommend trade studies.

Design Requirements Review/Conceptual Design Review
11/96

• Preliminary design:

>> Perform trade studies, optimize design, develop subcontracting plans, resolve all technical issues.

- Preliminary Design Review

2/97

6/97

• Detailed design:

>>Document design details, procedures and test criteria, solicit subcontract proposals/bids.

- Final Design Review

4/96

COST SUMMARY

Cost Item	CBI Prop. Direct+O/H (no G&A/P) \$K	Current estimate \$K	Comments				
System design/trade studies							
Prepare specs, subKs; write procedures	63						
Insulation: tube (subK) ends & ports - cap. cost ends & ports - install & remove	1248	1248 100	Early LIGO est.= 514K (4") On-site labor cost not incl.				
Electrical power/controls/temperature instrumentation: Transformers - cap. cost Transformers - install & remove DC supplies - cap. cost Instrumentation - cap. cost DC & Instrumentation - install & remove Other Direct Costs	288 160 502 166	135 260 288 160 502 100	CBI numbers; local Power Co. cheaper? Can subK beat it? " 1800 m-hr / module! freight, travel, tools, etc.				
Pumping / Vacuum instrumentation: 2 ea. 500 L/s turbo/backing pump packages 10 ea. 10" cryo pumps 3 ea. 50 L/s turbo/backing pump packages 1 ea. low-sensitivity RGA 9 PEM RGAs Metal valves & plumbing @ \$15K/port Calibration module		50 250 30 20 150 20	Return to DET installed				

Cost Item	CBI Prop. Direct+O/H (no G&A/P) \$K	Current estimate \$K	Comments						
Bake labor: CBI = 8 m-yr. per site 24-hr. monitor (1 person) = 1.5 m-yr. per site	2073	150	This is where the real \$ difference comes from						
CBI G&A/etc. CBI profit @ 10%	732 523								
SUBTOTAL	5755	3463							
Bakeout power: @ \$.04/kW-hr., WA @ \$.08/kW-hr., LA	67 135	67 135							
TOTAL	5957	3665	3240 = Cost Book/ COBRA						

