LIGO PROJECT California Institute of Technology / Massachusetts Institute of Technology

National Science Foundation Technical Review October 22-24, 1996 - California Institute of Technology-Pasadena, California 91125 LIGO G960215-00-M

National Science Foundation Technical Review of the LIGO Project October 22-24, 1996 112-114 East Bridge

Agenda Tuesday October 22, 1996:

- 8:30 am 9:00 am: Review Committee Executive Session
- 9:00 am 10:00 am: Project Status/Overview Sanders
- 10:00 am 12:00 pm: Detector/ R&D Technical Status Whitcomb/Zucker
- 12:00 pm 1:00 pm: Lunch Break
- 1:00 pm 2:00 pm: Advanced Detector R&D Proposal Sanders/Thorne
- 2:00 pm 3:30 pm: Facilities Technical Status Coles
- 3:30 pm 3:45 pm: Break
- 3:45 pm 4:45 pm: Data Format/Analysis/Modeling Lazzarini
- 6:30 pm 8:00 pm: Dinner at Clearwater Cafe

LIGO PROJECT

California Institute of Technology / Massachusetts Institute of Technology

NSF Technical Review - October 22-24, 1996

Second Day of Review-Possible Topics for Discussion

Detector:

- Seismic Isolation Design
- Suspension Design/Prototype Status
- Pathfinder Polishing Results •
- Core Optics Polishing Plan
- Coating Uniformity Testing
- 10 W Laser Status and Plans •
- Alignment Sensing & Control **Conceptual** Design
- Length Sensing & Control **Conceptual Design**
- Control & Data System Global Design Data Acquisition Vacuum Controls

- F. Raab, R. Vogt, HYTEC
- S. Kawamura, J. Hazel
 - B. Kells
 - G. Billingsley
 - D. Jungwirth, H. Yamamoto, B. Kells
 - S. Whitcomb, R. Savage
 - P. Fritschel, M. Zucker
 - J. Camp

M. Zucker R. Weiss

R. Bork, J. Heefner

R & D:

Recycling Status & Plans

- J. Logan PNI Status & Plans P. Fritschel
- Alignment Status & Plans
- Double Suspensions
- Advanced Interferometer Configurations S. Kawamura
- Thermal Noise Studies R. Weiss
- Other Topics from Advanced R & D Proposal, as requested

Data Format/Analysis/Modeling:

- Data Formats for LIGO Archives
- Data Analysis Concept
- Modeling and Simulation .

Civil Construction (WA): (O. Matherny)

- BT Slab
- Enclosures
- Buildings
- Surveying

- K. Blackburn A. Lazzarini/K. Blackburn
- H. Yamamoto

Laser Interferometer Gravitational Wave Observatory

Civil Construction (LA): (F. Asiri)

- Rough Grading
- Access Road

.

•

• Building and BT Slab Contract

Beam Tube: (L. Jones)

- Fabrication
- Installation
- LIGO Audit

Baffles: (A. Sibley)

Vacuum Equipment: (J. Worden)

- Fabrication
- Prototype First Article

.

Glossary of Acronyms and Abbreviations

1x/2x/3x	notation for single, double, and three-fold coincidence operational modes of the LIGO detector comprised of 3 IFOs
10BaseT	telephone type Ethernet cable
ADC	Analog-to-Digital Converter
AMU	Atomic Mass Unit
API	Application Programmer Interface
AS	Alignment System
ASC	Alignment Sensing and Control
АТМ	Asynchronous Transfer Mode (inter-processor communications pr
BAC	Budget At Completion
BCU	Beam Control [Init
BNWL	Battelle Northwest Laboratories
BSC	Beam Splitter Chamber
BT	Beam Tube
BTD	Beam Tube Demonstration
	Budget
	Control Area and Networking System
CACR	Control Area and Networking System
CACR	Control Agount Manager
CAM	
CAP	Chicage Bridge (Tran
CBI	Chicago Bridge & Iron
ССВ	Change Control Board
CCD	Charge Coupled Device
CDF/HDF	Common/Hierarchical Data Format
CDR	Conceptual Design Review
CDRL	Contract Data Requirements List
CDS	Control and Data System
CDS/DAQ	Computer & Data Systems Data Acquisition System
CNTR	beam Centering Alignment System
COC	Core Optics Components
COS	Core Optics Support
COTS	Commercial Off-The-Shelf software
CPU	Central Processing Unit
CSIRO	Commonwealth Scientific & Industrial Research Organization
CSR	Center for Space Research (MIT)
DAC	Digital-to-Analog Converter
DCC	Document Control Center
DCCD	Design Configuration Control Document
DEC/SUN	Computer Manufacturers: Digital Equip.Corp/SUN Microsystems,
DMA	Direct Memory Access
DOE/ESNET	Dept. of Energy/Energy Sciences Network
DOF	Degree of Freedom
DRD	Data Requirement Description
DRR	Design Requirements Review
DSP	Digital Signal Processor
EAC	Estimate At Completion
EFINISH	Early Finish
EPICS	Experimental Physics and Industrial Control System
ESTART	Early Start
ETC	Estimate to Complete
FAB	Fabrication
FDB	Final Design Review
FFT	Fast (Discrete) Fourier Transform
Fiber Channel	255 Mbit per second communications network
FIFO	First In. First Out Method of reading data written to dynamic
FMT	Fixed Mass Interferometer
FSSC	Frequency-Shifted Subcarrier generator
COS	Global CDS Functions
60	General Optics (Company Name)
CPIR	General Purpose Interface Bus
OLTD	Concrat rathere tucettace pag

GPIB	General Purpose Interface Bus
GPS	Global Positioning System
GUI	Graphical User Interface
GW	Gravitational Wave
НАМ	Horizontal Access Module
HDOS	Hughes Danbury Optical Systems (Company Name)
HEP	High Energy Physics
HNR	Hanford Nuclear Reservation (LIGO Site)
HYTEC	Company Name
I/O	Input/Output
IAS	Initial Alignment System
IFO	Interferometer
IFODAQ	Interferometer Data Acquisition
IOC	Input/Output Controller
100	Input/Output Optics
IPAC	Image Processing & Analysis Center (Caltech)
IPS	Integration Project Schedule
IR	Infrared
ISC/ASC/LSC	Interferometer/Alignment/Length Sensing & Control Systems
JPL	Jet Propulsion Laboratory
kB/MB/GB/TB	kilo-/mega-/giga-/terabyte: 10^3/10^6/10^9/10^12 bytes
kFLOP/MFLOP/GFLOPS	kilo/Mega/Giga Floating Point Operations per second
kpc	3 x 3^3 lightyear (kiloparsec)
LA	Louisiana
LAN	Local Area Network
LIGO	Laser Interferometer Gravitational-Wave Observatory
LN2	Liquid Nitrogen
LNT2	Liquid Nitrogen Trap No. 2
LOS	Large Optic Suspension
LRC	LIGO Research Community
LSC	Length Sensing and Control
LSU	Louisiana State University
LVDT	Linear Variable Differential Transducer
LVEA	Laser/Vacuum Equipment Area
MIMO	Multiple Input, Multiple Output
MOPA	Master Oscillator, Power Amplifier
NPRO	Nonplanar Ring Oscillator
NIST	National Institute of Standards and Technology
NS	Neutron Star
NSB	National Science Board
NSF	National Science Foundation
OPI	Operator Interface
OptLev	Optical Lever Alignment System
OSEM	Integrated Optical Position Sensor/ElectroMagnetic driver
PAC	(LIGO) Program Advisory Committee
PDR	Preliminary Design Review
PDRK	Preliminary Design Requirements Review
PEPE	Physical Environment Monitoring System
PERF	Programmable Logic Controller
PLC	Project Manager
	Performance Measurement Baseline
	Project Management Control System
PMDAO	Physical Environment Monitor Data Acquisition
	Phase Noise Interferometer
POSTX	established industry standard for software/hardware interface
PST	Process Systems International
PST.	Prestabilized Laser
P7.T	Piezo-electric Transducer
OT	Qualification Test
отr	Oualification Test Review
RAID	Redundant Array of Inexpensive Disks
RAM	Responsibility Assignment Matrix
RDIAG	Remote Diagnostics
REO	Research Electro-Optics (Company Name)

RFPRequest for ProposalRGAResidual Gas AnalyzersSecondSCSupercomputer(ing) Center(s)SEISeismic IsolationSISeismic IsolationSNRSignal-to-Noise RatioSOSSmall Optic SuspensionSPARCScaled Processor ArchitectureSQUSunspare 20 workstationSURIBM's Sponsored University Research Grants ProgramSQLStandard Quantum LimitSQRTSquare RootSTACIS(Product Name)SUSSuspension SystemSUSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTKAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum EquipmentVEAVacuum EquipmentVEAVacuum Equipment AreaVFGOItalian-French Laser Interferometer CollaborationVMKVersa Modular Eurocard (IEEE 1014)VXIROItalian-French Laser IntermentationVMAVLANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFNTWavefront Alignment SystemXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	RF	Radio Frequency
RGAResidual Gas AnalyzersSecondSCSupercomputer(ing) Center(s)SEISeismic IsolationSISeismic IsolationSNRSignal-to-Noise RatioSOSSmall Optic SupensionSPARCScaled Processor ArchitectureS20SunSparc 20 workstationSQLStandard Quantum LimitSQRTSquare RootSTACIS(Product Name)SUPSupport EquipmentSUSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTrasmission Control Protocol/Internet ProtocolTFTotal FloatTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum EquipmentVEAVacuum EquipmentVEAVacuum System ControlsTFTotal FloatTVETasmistion Control Protocol/Internet ProtocolTFTotal FloatTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum EquipmentVEAVacuum EquipmentVEAVacuum EquipmentVEAVacuum EquipmentStandardStandardStandardStandardStandardStandardStandardStandardStandardStandardStandardStandardStandardStandardStandardStandardStandard	RFP	Request for Proposal
SecondSCSupercomputer(ing) Center(s)SEISeismic IsolationSISeismic IsolationSIRSeismic IsolationSNRSignal-to-Noise RatioSOSSmall Optic SuspensionSPARCScaled Processor ArchitectureSS20SunSparc 20 workstationSURIBM's Sponsored University Research Grants ProgramSQLStandard Quantum LimitSQRTSquare RootSTACIS(Product Name)SUPSupport EquipmentSUSSuspension SystemSYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTMAJapanese Interferometer CollaborationVMCVacuum Equipment AreaVACVacuum Equipment AreaVFCVacuum Equipment AreaVRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVMKVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVMA/LAN<	RGA	Residual Gas Analyzer
SCSupercomputer(ing) Center(s)SEISeismic IsolationSISeismic IsolationSNRSignal-to-Noise RatioSOSSmall Optic SuspensionSPARCScaled Processor ArchitectureS20SunSparc 20 workstationSQLStandard Quantum LimitSQRSupport EquipmentSUSSuspension SystemSYSSystems EngineeringTTimeTACKTotal FloatTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTMOCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Equipment AreaVFCVacuum Equipment AreaVFCVacuum Equipment AreaVFCVacuum Equipment AreaVKSa real time operating system for VME based systemsMAMashingtonWA/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFNTWavefront SensingWFNTWavefront Alignment SystemXCVRTransmitter/Receiver	S	Second
SriSeismic İsolationSISeismic IsolationSIRSignal-to-Noise RatioSOSSmall Optic SuspensionSPARCScaled Processor ArchitectureS20SunSparc 20 workstationSURIBM's Sponsored University Research Grants ProgramSQLStandard Quantum LimitSQRTSquare RootSTACIS(Product Name)SUPSupport EquipmentSUSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Equipment AreaVFCVacuum Equipment AreaVMOrksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFNWavefront SensingWFNTWavefront SensingVFNTWavefront SensingVFNTWavefront SensingVFNTWavefront SensingVFNTWavefront SensingVFNTWavefront SensingVFNTWavefront SensingVFNTWavefront Sensing<	SC	Supercomputer(ing) Center(s)
STSeismic IsolationSNRSignal-to-Noise RatioSOSSmall Optic SuspensionSPARCScaled Processor ArchitectureS20SunSparc 20 workstationSURIBM's Sponsored University Research Grants ProgramSQLStandard Quantum LimitSQRTSquare RootSTACIS(Product Name)SUPSupport EquipmentSUSSuspension SystemSYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTKThree-letter AcronymTMCTest Mass ChamberWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVENSNSF counterpart to DOE's ESNETVEVacuum EquipmentVFCVacuum Equipment AreaVFCVacuum Equipment Lise IollalVIROOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVXMorksa real time operating system for VME based systemsWAWabingtonWAN/LANWide/Local Area (Computer) NetworkWFSWavefront SensingWFWork Breakdown StructureWFNTWavefront SensingWFNTWavefront SensingWFNTWavefront SensingVENTWavefront Sensing	SEI	Seismic Isolation
SNRSignal-to-Noise RatioSOSSmall Optic SuspensionSPARCScaled Processor ArchitectureS20SunSparc 20 workstationSURIBM's Sponsored University Research Grants ProgramSQLStandard Quantum LimitSQRTSquare RootSTACIS(Product Name)SUPSupport EquipmentSUSSuspension SystemSYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVPNSNSF counterpart to DOE's ESNETVEVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVeras Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVxWorksa real time operating system for VME based systemsMAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFNTWavefront SensingVFNTWavefront SensingVFNTWavefront Sensing	ST	Seismic Isolation
SOSSmall Optic SuspensionSPARCScaled Processor ArchitectureSS20SunSparc 20 workstationSURIBM's Sponsored University Research Grants ProgramSQLStandard Quantum LimitSQRTSquare RootSTACIS(Product Name)SUPSupport EquipmentSUSSuspension SystemSYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVXWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWavefront SensingWPWork PackageWVENTWavefront Alignment SystemXCVRTransmitter/Receiver	SNR	Signal-to-Noise Ratio
SPARCScaled Processor ArchitectureSS20SunSparc 20 workstationSURIBM's Sponsored University Research Grants ProgramSQLStandard Quantum LimitSQRTSquare RotSTACIS(Product Name)SUPSupport EquipmentSUSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberVNIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum EquipmentVEVacuum EquipmentVEVacuum EquipmentVEVacuum Equipment AreaVFCVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVWorksa real time operating system for VNE based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFNWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	SOS	Small Optic Suspension
SS20SunSpare 20 workstationSURIBM's Sponsored University Research Grants ProgramSQLStandard Quantum LimitSQRTSquare RootSTACIS(Product Name)SUPSupport EquipmentSUSSuspension SystemSYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVEVacuum EquipmentVEAVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Equipment AreaVFCVacuum Equipment AreaVKOKsa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	SPARC	Scaled Processor Architecture
SURIBM's Sponsored University Research Grants ProgramSQLStandard Quantum LimitSQRTSquare RootSTACIS(Product Name)SUPSupport EquipmentSUSSuspension SystemSYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMODLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVFCVacuum Equipment AreaVFCVacuum Equipment for Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVXWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWFSWavefront SensingWPWork Breakdown StructureWFNTWavefront Alignment SystemXCVRTransmitter/Receiver	SS20	SunSparc 20 workstation
SQLStandard Quantum LimitSQRTSquare RootSTACIS(Product Name)SUPSupport EquipmentSUSSuspension SystemSYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberVWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Equipment AreaVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVxWorksa real time operating system for VME based systemsWAWashingtonWANLANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFNTWavefront SensingWPWork PackageWVFNTWavefront SensingVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	SUR	IBM's Sponsored University Research Grants Program
SQRTSquare RootSTACIS(Product Name)SUPSupport EquipmentSUSSuspension SystemSYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXMorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	SOL	Standard Quantum Limit
STACIS (Product Name) SUP Support Equipment SUS Suspension System SYS Systems Engineering T Time TAMA Japanese Interferometric Gravitational-Wave Detector Project TCP/IP Transmission Control Protocol/Internet Protocol TF Total Float TLA Three-letter Acronym TMC Test Mass Chamber TWIDDLE name of a particular modelling code within LIGO UTC Universal Time Code VAC Vacuum System Controls VBNS NSF counterpart to DOE's ESNET VE Vacuum Equipment VEA Vacuum Equipment Area VFC Vacuum Feedthroughs and Cabling VIRGO Italian-French Laser Interferometer Collaboration VME Versa Modular Eurocard (IEEE 1014) VXI VME eXtensions for Instrumentation VXWorks a real time operating system for VME based systems WA Washington WAN/LAN Wide/Local Area (Computer) Network WBS Work Breakdown Structure WFS Wavefront Sensing WP Work Package WVFNT Wavefront Alignment System XCVR Transmitter/Receiver	SORT	Square Root
SUPSupport EquipmentSUSSuspension SystemSYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVXWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	STACIS	(Product Name)
SUSSuspension SystemSYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVXMorksa real time operating system for VME based systemsWAWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	SUP	Support Equipment
SYSSystems EngineeringTTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Eduipment AreaVKEVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVxWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	SUS	Suspension System
TTimeTAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME extensions for InstrumentationVxWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	SYS	Systems Engineering
TAMAJapanese Interferometric Gravitational-Wave Detector ProjectTCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXMorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	T	Time
TCP/IPTransmission Control Protocol/Internet ProtocolTFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DCe's ESNETVEVacuum EquipmentVECVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXNorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	ТАМА	Japanese Interferometric Gravitational-Wave Detector Project
TFTotal FloatTLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	TCP/IP	Transmission Control Protocol/Internet Protocol
TLAThree-letter AcronymTMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME eXtensions for InstrumentationVXworksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	TF	Total Float
TMCTest Mass ChamberTWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME eXtensions for InstrumentationVXWorksa real time operating system for VME based systemsWAWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	TLA	Three-letter Acronym
TWIDDLEname of a particular modelling code within LIGOUTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME eXtensions for InstrumentationVxWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	TMC	Test Mass Chamber
UTCUniversal Time CodeVACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME eXtensions for InstrumentationVxWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	TWIDDLE	name of a particular modelling code within LIGO
VACVacuum System ControlsVBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME eXtensions for InstrumentationVxWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	UTC	Universal Time Code
VBNSNSF counterpart to DOE's ESNETVEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME eXtensions for InstrumentationVxWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	VAC	Vacuum System Controls
VEVacuum EquipmentVEAVacuum Equipment AreaVFCVacuum Feedthroughs and CablingVIRGOItalian-French Laser Interferometer CollaborationVMEVersa Modular Eurocard (IEEE 1014)VXIVME eXtensions for InstrumentationVxWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	VBNS	NSF counterpart to DOE's ESNET
VEA Vacuum Equipment Area VFC Vacuum Feedthroughs and Cabling VIRGO Italian-French Laser Interferometer Collaboration VME Versa Modular Eurocard (IEEE 1014) VXI VME eXtensions for Instrumentation VxWorks a real time operating system for VME based systems WA Washington WAN/LAN Wide/Local Area (Computer) Network WBS Work Breakdown Structure WFS Wavefront Sensing WP Work Package WVFNT Wavefront Alignment System XCVR Transmitter/Receiver	VE	Vacuum Equipment
 VFC Vacuum Feedthroughs and Cabling VIRGO Italian-French Laser Interferometer Collaboration VME Versa Modular Eurocard (IEEE 1014) VXI VME eXtensions for Instrumentation VxWorks a real time operating system for VME based systems WA Washington WAN/LAN Wide/Local Area (Computer) Network WBS Work Breakdown Structure WFS Wavefront Sensing WP Work Package WVFNT Wavefront Alignment System XCVR 	VEA	Vacuum Equipment Area
VIRGO Italian-French Laser Interferometer Collaboration VME Versa Modular Eurocard (IEEE 1014) VXI VME eXtensions for Instrumentation VxWorks a real time operating system for VME based systems WA Washington WAN/LAN Wide/Local Area (Computer) Network WBS Work Breakdown Structure WFS Wavefront Sensing WP Work Package WVFNT Wavefront Alignment System XCVR Transmitter/Receiver	VFC	Vacuum Feedthroughs and Cabling
VMEVersa Modular Eurocard (IEEE 1014)VXIVME eXtensions for InstrumentationVxWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	VIRGO	Italian-French Laser Interferometer Collaboration
VXI VME eXtensions for Instrumentation VxWorks a real time operating system for VME based systems WA Washington WAN/LAN Wide/Local Area (Computer) Network WBS Work Breakdown Structure WFS Wavefront Sensing WP Work Package WVFNT Wavefront Alignment System XCVR Transmitter/Receiver	VME	Versa Modular Eurocard (IEEE 1014)
VxWorksa real time operating system for VME based systemsWAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	VXI	VME eXtensions for Instrumentation
WAWashingtonWAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	VxWorks	a real time operating system for VME based systems
WAN/LANWide/Local Area (Computer) NetworkWBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	WA	Washington
WBSWork Breakdown StructureWFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	WAN/LAN	Wide/Local Area (Computer) Network
WFSWavefront SensingWPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	WBS	Work Breakdown Structure
WPWork PackageWVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	WFS	Wavefront Sensing
WVFNTWavefront Alignment SystemXCVRTransmitter/Receiver	WP	Work Package
XCVR Transmitter/Receiver	WVENT	Wavefront Alignment System
	XCVR	Transmitter/Receiver

LIGO Project Status

Gary Sanders

NSF Technical Review

October 22-24, 1996

This Talk

- Technical Status
- Cost/Schedule Status

>>covered mainly in this talk as emphasis in this review is technical

- Evolution of LIGO Organization
 - >>LIGO Collaboration and LIGO Laboratory

>>LIGO Program Advisory Committee

LIGO Construction is 34% complete!

2

Technical Highlights - Vacuum Equipment

• Vacuum Chambers

>> First BSC article built and tested, outgassing data available

>>PSI has placed full BSC chamber contracts and is fabricating HAM chambers in-house

Gate Valves

>> First two large valves are on site

- One is installed on slab

>> Much learned during first article testing of operation and shock

Pump sets, bellows, bakeout equipment, etc. now being fabricated

>> Deliverables for Hanford Beam Tube installation are nearly complete

Vacuum Equipment System Cartoon

Beam Splitter Chamber

48" Gate Valve Body

Technical Highlights - Beam Tube

Beam Tube Fabrication is qualified and underway in the field

>> materials conformance, spiral welding, other welding, leak checking, and cleaning have been qualified, verifying major technical risks are under control

>> ~50 tubes fabricated and no leaks in 28 checked

Installation is ready to proceed

>>Installation Readiness Review successfully completed last Thursday

- 300 baffles ready for installation at Hanford
- CB&I team performing very well and LIGO team witnessing all operations .

Big Pasco CB&I Fabrication Plan View

Stainless Steel Delivery

Spiral Mill

Stiffening Ring Welding

Segment Vacuum Testing Cask

Expansion Joint at Fab. Readiness Review

Weiss Lecturing to CB&I Boilermakers

Installation Cartoon Plan View

Installation Cartoon Detail

Technical Highlights - Hanford Civil Construction

- Hanford beam tube enclosures construction very far along
 - >> ~1400 enclosures fabricated, rejection rate ~1%
- Hanford site concrete work nearly done
- Hanford buildings construction 7% complete

Beam Tube Enclosures at Fab. Site -Aerial View

Enclosure Segment Installation

LVEA Aerial View

LIGO-G960208-00-M

Technical Highlights - Livingston Construction

- Livingston rough grading essentially complete (The rain is not mainly in Spain!)
- Livingston concrete and building packages bids opened on October 15

Contract	LIGO Cost Book	Bid Price
Slab, Enclosures, Roads, Enc. Inst.	\$9.2 million	\$8.8 million
Buildings	\$13.39 million	\$13.46

• These contracts are the last of the very large LIGO contracts, marking LIGO passage beyond major bid jeopardy

>>we must now manage these fixed price contracts to the contract cost

Livingston Site View 1

Livingston Site View 2

Technical Highlights - R&D

• MIT Phase Noise Interferometer

>>Demonstration of phase sensitivity 3.5×10^{-10} rad \wedge Hz, to the best of our knowledge the highest optical phase sensitivity ever, and only a factor of 3 less than the LIGO goal

• CIT 40 Meter Interferometer

- >>Successful test of single loop suspension
- >>Completion of optical recombination
- >>Power recycling experiment in early stages
 - -higher transmission vertex mirrors installed
 - -vacuum, beam splitter, recycling mirror changes this winter and spring
- MIT Fixed Mirror Interferometer experiment ~ complete

Phase Noise Sensitivity From MIT Interferometer

LIGO

LIGO-G960208-00-M

New Single Loop 40 Meter East Vertex Suspension

Technical Highlights - Detector

- 10 W laser contract started with Lightwave Electronics; breadboard unit being assembled
- Placed order for fused silica blanks for all Core Optics
- Placed order for polishing primary lot of End Test Masses
- Proposals for polishing remaining Core Optics being evaluated now

Technical Highlights - Detector

- Preliminary designs for Length and Alignment Sensing and Control Systems underway
- Preliminary mechanical design for suspensions completed and prototypes in fabrication/test

>>SOS prototype in test now

- Seismic Isolation Stack requirements defined and preliminary design started at HYTEC
- Preliminary design of Control and Data System global achitecture completed
- Preliminary design of Vacuum Control and Monitoring System complete and awaiting review

Cost Schedule Status as of End of August 1996

Funds, Commitments, Costs

Contingency vs. Estimate to Complete

Contingency vs. Percent Complete (through August 1996)

LIGO Funding by NSF Task and by Year

Provosed

Construction	R&D	Operations	Advanced R&D	Total
35.9	11.2			47.1
85.0	4.0			89.0
70.0	2.4			72.4
55.0	1.6	0.3	1.7	58.6
27.1	······································	7.3	2.7	37.1
		20.9	2.7	23.6
	-	21.1	2.7	23.8
	10 months >	19.1	2.6	21.7
	Construction 35.9 85.0 70.0 55.0 27.1	Construction R&D 35.9 11.2 85.0 4.0 70.0 2.4 55.0 1.6 27.1 10 months >	Construction R&D Operations 35.9 11.2	ConstructionR&DOperationsAdvanced R&D 35.9 11.2

Costs and Commitments through September 1996

WBS	Costs Thru Nov 1995	Three Quarters LFY 1996	Sep-96	Oct-96	Nov-96	Cumulative Costs	Open Commitments	Total Cost Plus Commit- ments
1.1.1VacEquip	4,081	14,425	415			18,921	22,749	41,670
1.1.2 BmTube	2,736	6,822	3,862			13,420	36,575	49,995
1.1.3 BTEncl	468	3,924	947			5,339	3,568	8,907
1.1.4 Civil	6,677	4,981	1,377			13,035	19,622	32,657
1.2 R&D	2,430	2,620	258			5,308	5,529	10,837
1.3 Detector	13,321	2,963	152			16,436	1,185	17,621
1.4 ProjOffice	10,152	4,544	455			15,151	1,782	16,933
Unassigned	79	(122)	(1)			(44)	74	30
TOTAL	39,943	40,157	7,465	•	•	87,565	91,084	178,649
Cumulative								
Actual Costs	39,943	80,100	87,565					
Open Commitments	44,993	88,814	91,084					
Total Costs Plus								
Commitments	84,935	168,914	178,649					
NSF Funding	138,089	208.468	208.468					

(All Entries are \$ Thousands)

Note: Unassigned costs have not been assigned to a LIGO WBS, but are continually reviewed to assure proper allocation.

Major Subcontracts Awarded Since the Last Semi-Annual Review

Subcontract	Award Date	Award Amount	Selection Basis
Baffle Coating - West Coast Porcelain	April 1996	\$163K	Competitive
Civil Construction (WA) - Levernier Construction	July 1996	\$15,651	Competitive
Installation of Beam Tube Enclosures (WA) - Levern- ier Construction	September: 1996	\$1600K	Competitive
Nd3+ Lasers - Lightwave Electronics	May 1996	\$735K	Competitive
Fused Silica Mirror Blanks - Heraeus Amersil (17 pieces)	August 1996	\$1230K	Competitive
Fused Silica Mirror Blanks - Corning, Inc. (21 pieces)	August 1996	\$360K	Competitive
Seismic Isolation Stack Development - Hytec	August 1996	\$1865K	CO to Existing Contract
MIT Contract Change Orders 19 and 20	Waiting NSF Approval	\$1023K	CO to Existing Contract

Major Subcontracts Planned in FY 1997 (and the remainder of this year)

Subcontráct	Award Date	Award Estimate	Selection Basis
Civil Construction (LA)	November 1996	\$13,500K	Competitive
Slab, Beam Tube Enclosures, Installation of Beam Tube Enclosures (LA)	November 1996	\$8820K	Competitive
Optics Polishing	October 1996	\$65K	Sole Source FFP
Full Service Polishing	December 1996		Competitive FFP
Optics Coating	Spring 1997		Change Order
Detector Stack Fabrication (multiple contracts)	Winter 1997		Competitive FFP
Suspension System Fabrication	Winter 1997		Competitive FFP
IOO R&D (University of Florida)	November 1996	\$300K	Sole Source Collab
Optical Modeling	Winter 1996	\$200K	Change Order NTE
Metrology (NIST)	Winter 1996	\$200K	Change Order NTE

LIGO Project Staffing History

OCTOBER 1996

LIGO Project Construction Phase Organization

Evolution of LIGO Personnel

 Since last review, remaining management positions have been filled

>>Jordan Camp is the Laser and Optics Task Leader

>>Mike Fine is the Isolation Task Leader

>>Dennis Coyne has assumed new role as Lead Engineer in the Detector Group

• Two new faculty members at Caltech have joined LIGO

>>Professor Tom Prince

>>Professor Ken Libbrecht

Evolution of Organization

- Hanford Site Head Fred Raab moves to Hanford mid-1997
- Otto Matherney, John Worden, Cecil Franklin, Rich Riesen currently resident in Hanford
- Rolf Bork from CDS Group moves to Hanford early in 1997
- Livingston Site Head Mark Coles moves approx. one year later
- Gerry Stapfer, Allan Sibley locate in Livingston in 1997
- Other members of LIGO are currently planning relocation to the sites
- LIGO organization and reporting will become site-based

Evolution of Organization

- Organization will evolve to reflect this
- Beam Tube bakeout predominantly executed during sitebased construction period, when integration of the system is at peak
- Beam Tube bakeout planning and execution will be coordinated by Bill Althouse, in collaboration with the Integration Group, and reporting to the respective site heads during execution

>>LIGO Project is proceeding to plan the beam tube bakeout and execution, but commitment is made only to execute the first module bake. Commitment to remaining three module bakeouts will be made at a point close to execution.

LIGO Collaboration / Laboratory

- NSF McDaniel Report presented a vision of a Laboratory and a Collaboration after construction
- McDaniel Report urged definition of an appropriate R&D program and of adequate computation capability

>>Our Advanced Detector R&D Proposal is consistent with R&D recommendation

>>Albert Lazzarini will report later in this review on LIGO efforts in modeling, data format standards, and data analysis, and our view of the future. This will introduce the LIGO study to be considered at the next NSF review in spring 1997.

Program Advisory Committee

- LIGO Program Advisory Committee (being formed now) will be the principal review/advice mechanism used in guiding LIGO's program on
 - >> proposals for scientific use of LIGO
 - >> R&D proposals
 - >>McDaniel Report guidance
- First meeting will be held this year, several meetings by summer

Program Advisory Committee

• Members

- >>Bill Fraser, Chair
- >>Paul Avery
- >>Alain Brillet
- >>Sam Finn (LRC)
- >>Bill Hamilton
- >>Peter Michelson
- >>Peter Saulson
- >>Robbie Vogt

>>and others that round out the committee, currently considering our invitation

- Vacuum Equipment contractor is underway, all materials ordered, first article fabrication successful, designs validated, contract about 50% complete. Major technical issues resolved.
- All major beam tube fabrication processes now qualified.
 Fabrication in progress.
- All major beam tube installation processes have been successfully reviewed for readiness. Installation begins this week.
- Beam tube baffle design, performance, fabrication processes qualified and in production.

- Hanford slab construction complete and meets LIGO requirements.
- Hanford beam tube enclosure proceeding on schedule and enclosures and installation have been qualified.
- Hanford building construction 7% complete and no significant issues developed.
- Livingston rough grading nearing completion and first surveys appear to meet our requirements.
- Livingston early soil settlement appears very slow and very slight.

- All facility design, integration and interface issues appear to be well within design envelope.
- Phase Noise measurement has set a record.
- New suspension design successfully tested at 40 Meter.
- Fixed Mirror Experiment nearing completion.
- Laser breadboard unit in fabrication.
- Industry ready to produce blanks, polishing, coating meeting LIGO requirements.
- SOS prototype successfully tested.

- Seismic stack baseline and superior alternate designs progressing.
- Preliminary design processes complete for suspensions, CDS global, Vacuum Control System.

LIGO Construction is 34% complete!

NSF Review -

Detector and R&D

S. Whitcomb 22 October 1996

,

- -- - -- -- -- --

LIGO-G960218-00-D

Outline

- Overview (detector organization update)
- R&D progress and accomplishments (Mike Zucker)
- Detector progress and status
- Response to committee recommendations

LIGO Detector Organization

10/17/96

Activity Identification	Milestone Description	Plan Dates	Current Month End Status SEP96	Schedule Change	Status
12009100	Award Contract for Nd:YAG Laser Development	Jun-96	May-96	20	Complete
12045020	PDR for Optics Suspension System	Jun-96	Jun-96	0	Complete
12033425	DRR II Alignment Sensing Control	Jun-96	Aug-96	-40	Complete
12003020	Test of new Suspension Design on 40m	Jul-96	Aug-96	-20	Complete
12085065	PDR for Global CDS	Jul-96	Sep-96	-30	Complete
12039059	Core Optics Polishing Procurement	Dec-96	Oct-96	40	
12009020	Completion of Nd: YAG Master Oscillator Stabilization	Aug-96	Nov-96	-60	
13220442	Completion of PNI recycling experiments (with AR Laser)	Aug-96	Dec-96	-80	
12024075	PDR for Length Sensing Control	Oct-96	Dec-96	-33	
12039122	Demonstration of Coating Uniformity	Dec-96	Dec-96	0	
12033445	PDR for Alignment Sensing Control	Oct-96	Jan-97	-52	
12057020	PDR for Seismic Isolation Stacks	Jan-97	Jan-97	0	
13221935	First Operation of 40m with Recycling Mirror	Apr-97	Mar-97	20	
12012120	IR PSL FDR	Apr-97	Apr-97	0	
12062035	PDR for Data Acquisition System	Mar-97	May-97	-45	
					•

~

R&D Progress

see presentation G960219-00-D by

Mike Zucker

LIGO-G960218-00-D

Detector System Engineering: Progress and Status

- Set of consistent detector subsystem requirements developed and nearly ready for review
- Several inter-subsystem trade studies in progress

>>Suspension drive range vs. Seismic isolation actuation

Definition of key detector-wide parameters

- Optical configuration, modulation frequencies, cavity lengths
- >>Wedge angles for Core Optics
- >>Parameters for 2 km interferometer

Nd:YAG Laser: Progress and Status

• Goal: Develop 10 W diode-pumped Nd:YAG laser suitable for LIGO

- >>Single Frequency
- >>Diffraction-Limited, Single Transverse Mode
- >>Intensity and Frequency Stabilization
- Contract awarded to Lightwave Electronics for 10W laser
 - >>Proposed MOPA design using commercial 700 mW NPRO laser as Master Oscillator
- Started parallel effort in-house to stabilize Lightwave NPRO for use on PNI and 40 m interferomerers
- Experience will be directly applicable to 10W laser

Nd:YAG Laser: Lightwave MOPA Design

- 4-Pass amplifier using polarization to extract final pass
- Based on existing commercial lasers

LIGO-G960218-00-D

Nd:YAG Laser: NPRO Stabilization

LIGO-G960218-00-D

Input Optics: Progress and Status

- Change to infrared forced delay in Input Optics design
- Collaboration being established with University of Florida, with UF group taking responsibility for Input Optics
- Refined scope of Input Optics to simplify interfaces to other subsystems for UF group
- Extended visits to LIGO by senior UF staff (Tanner and Reitze) to kickoff design effort
- Revew of requirements and conceptual design scheduled for November 7

Core Optics: Progress and Status

- Specification written and orders placed for fused silica blanks for core optics (>400 kg)
- Pathfinder polishing investigation completed

>>Comparative measurements made at NIST and REO

>>Three polishers qualified for LIGO polishing

- One polishing order placed (End Test Masses), remaining polishing proposals being evaluated
- Coating uniformity test apparatus and analysis developed, preliminary uniformity data encouraging

Core Optics: Pathfinder Polishing Results

NIST measurements of surface figure errors

Core Optics: Pathfinder Polishing Results

 Comparative surface roughness measurements made at REO

Suspension Design: Progress and Status

- Preliminary Design completed and reviewed
- Final design underway
- Small Optics Suspension (SOS)
 - >>Suitable for mode cleaner mirrors, other small components
 - >Prototype fabricated, being tested (Available for demo tomorrow)
- Large Optics Suspension (LOS)
 - >>Designed for Core Optics
 - >>Prototype being fabricated

LIGO Suspension: Design Heritage

Extrapolation to the LIGO Large Optics Suspension (LOS)

Items	40m TM Suspension or Pathfinder Q measurement	Extrapolated to LIGO	LIGO Requirements
Residual Q when damped	< 3	< 3	< 3
Internal Mode Loss	3×10^{-7}	3×10^{-7}	$< 4 \times 10^{-7}$
Pendulum Mode Loss	2×10^{-5} (Violin Mode)	7 × 10 ⁻⁶	< 7 × 10 ⁻⁶
Actuator Range (f < 0.15 Hz)	44 μm _{pp}	8 μm _{pp}	>80 µm _{pp}
Driver Noise (at 40 Hz)	$6 \times 10^{-19} m / \sqrt{Hz}$	$9 \times 10^{-20} m / \sqrt{Hz}$	$< 5 \times 10^{-20} m / \sqrt{Hz}$
Sensor Noise (at 40 Hz)	$4 \times 10^{-20} m / \sqrt{Hz}$	$4 \times 10^{-20} m / \sqrt{Hz}$	(Option) < $5 \times 10^{-20} m / \sqrt{Hz}$

Seismic Isolation: Progress and Status

- Requirements and conceptual design completed and reviewed
- Contract given to HYTEC to perform design of seismic isolation system
- Trade study to investigate constrained layer metal springs yielded two promising designs
 - Prototypes to investigate fabricability and performance under construction
- Preliminary design continuing in parallel with spring development

Metal Spring Concept: Constrained Layer Coil Spring

Metal Spring Concept: Semicircular Leaf Spring

Seismic Isolation: Preliminary Design

 Detailed modal analysis of seismic isolation structures

- Working with vendors to improve fabricability and cost
- Current seismic stack weight estimates

Chamber Type	Original LIGO Estimate	Current HYTEC Estimate
НАМ	6850 lbs	3835 lbs
BSC	13020 lbs	6321 lbs

Seismic Isolation: Design Issues

Vacuum penetrations (bellows)

- >>Large range of motion
- >>Constrained volume

Q of stack resonances

>>Important to get test data from constrained layer springs

Actuators for "Drift Compensation"

>>Must compensate for tidal motion (~400 μ m)

>>May need to compensate for microseismic peak (0.15 Hz)

• Cost

Alignment Sensing & Control: Progress and Status

- Design Requirements Review held, currently in preliminary design phase
- Alignment requirements for mirror angles and beam centering were refined and frozen
- Significant progress was made in modeling the environmentally induced alignment fluctuations expected at the sites
- Detection mode alignment strategy developed:

>> Wavefront Sensor system will be used to detect the mirror orientation degrees-of-freedom

>> Modeling of the alignment sensor signals for the full interferometer was completed

 Strategies identified for determining and maintaining proper alignment during the interferometer lock acquisition period

Modeling Alignment Fluctuations

LIGO

.

Alignment Servo Modeling

- >> solid lines: amplitude spectral density, radians/ \sqrt{Hz}
- >> dashed lines: integrated rms fluctuation from freq ${\rightarrow}10Hz$

Length Sensing & Control: Progress and Status

- Reviewed requirements and conceptual design
- Sample control loops analyzed to demonstrate viability
- Senior EE hired and assigned to length control electronics design
- Full nonlinear optical response model completed for use in lock acquisition studies

Length Sensing & Control: Control Loop Configuration

Length Sensing & Control: Performance Example

 Suppression of seismically driven arm length difference

Control & Data System: Progress and Status

Completed preliminary design of CDS infrastructure

- >>Operator systems
- >>Data networks
- >>Timing system
- >>Front end standards (hardware and software)
- >>Software tools and standards
- Completed preliminary design of in-vacuum cabling
- Reviewed requirements and conceptual design for Data Acquisition System
- Prototyping and testing of communications links, data acquisition hardware, etc.
- Preliminary design of vacuum control system nearly complete

Control & Data System: Control and Monitoring Network

• Asynchronous Transfer Mode (ATM) backbone.

>Point to point throughput : 3.8MBytes/sec between two Sparc10, CPU limited

>>Single ATM line to 155Mbits/sec (OC-3)

>>Aggregate bandwidth to 4Gbits/sec (Switch limit)

• ATM to Ethernet Switches

- >> 16 ethernet ports / ATM uplink
- >> Provides full 1MByte/sec to each connected processor

Video to ATM uplinks

Control & Data System: Rack Locations and Functions

Recommendations From Last Review Detector and R&D Overview

- "Project Management should monitor the technical interactions with the vendors of the Laser/Detector/ Suspension areas and arrange mechanisms to control potential change orders and cost overruns as presently being implemented in the conventional construction and vacuum areas."
 - >>Technical representative assigned to each major contract
 - >>Use Technical Direction Memorandum (same as for Facilities) for giving all significant inputs to contractors
 - Must be approved by appropriate level of management
 - By definition (in contract), cannot change cost or scope
 - Any change of cost or scope must be made through the contract
 - >>Frequent interactions with contractors to avoid surprises

Recommendations From Last Review

Lasers

- "A contract with well-defined milestones should be placed expeditiously for the development and delivery of 10W Nd:YAG lasers, and this contract should be supported through intensive technical exchange with the vendor."
 - >>Contract placed with Lightwave Electronics approximately one month after last Review
 - >>Key Milestones:
 - Kick-off Meeting -- June 1996
 - Breadboard demonstration of Power and Beam Quality December 1996
 - Preliminary Design Review -- March 1997
 - Delivery of first Units -- Sept 1997
 - >>On-going technical interchange established; proprietary agreement signed to allow detailed technical discussions
 - >>Collaborating with Byer group (Stanford) for laser testing and technical consultation

Recommendations From Last Review Seismic Isolation

 "Continue to monitor carefully the progress of HYTEC in developing the seismic isolation system for the optics mounting"

>>Regular and frequent contact with HYTEC

- Weekly email progress reports to cognizant Detector personnel
- Weekly telephone conference call to assess progress and to address areas of technical/programmatic concern
- Detailed technical reports on major results for LIGO information and review

Recommendations From Last Review Seismic Isolation

- "The combination springs appear to be attractive but their R&D should not be allowed to generate schedule risk for the final seismic isolation system design and construction."
 - >>Design of seismic stacks compatible with either viton or constrained layer springs
 - >>Prototype fabrication efforts give information about possible impact on fabrication schedule
 - >>Decision on constrained layer springs to be reviewed at
 - Seismic Isolation PDR January 1997

Recommendations From MIT Review Conversion to Nd:YAG Laser

 "With the switch to 1.06 µm system and the lead time that this must entail, the Panel strongly recommends the successful pursuit and addition of a scientist to lead the conversion of the PNI at MIT as soon as possible. Otherwise, the risk factor to the successful operation of the initial detector without this PNI experience base grows uncomfortable to the Panel."

>>Haisheng Rong added to MIT Staff

- Ph.D + 4 years Experience in High Precision Laser Spectroscopy
- Assigned full-time to PNI Conversion
- >>Long-lead IR optics for PNI conversion ordered at early date to enable fast start

Recommendations From MIT Review Laboratory Space

- "The Panel recommends that every effort be made to explore creative approaches that would allow the new laboratory space for the MIT LIGO group to remain on campus and still satisfy their seismic isolation needs."
 - >>Suitable MIT building (WW15) identified just a few blocks off campus
 - Seismic levels 3-4 x less than current lab, fewer large pulses
 - MIT to provide active seismic isolators to give further isolation
 - >>Adequate floor space for up to 15 m long interferometer
 - >>Adjacent office space to be supplemented by office space in CSR to maintain close contact with other MIT groups
 - >>Take advantage of move to upgrade MIT vacuum system, minimize interuption of MIT laboratory effort
 - More like LIGO, longer cavities (to permit operation of realistic interferometers at correct RF frequencies)
 - Improve cleanliness and ease of operation

Summary

- New detector organization functioning well
- Significant results from R&D program
 - >>PNI optical phase sensitivity advances state of the art
 - >>Completion of 40 m optical recombination
- Good progress on detector design and prototyping activities
 - >>Most detector subsystems have completed requirements/ conceptual design review, and are well into preliminary design phase

>>First orders of detector hardware placed

- Some detector milestones have slipped (typically ~2 months), but have recovered schedule along Critical Path
- No indication of significant cost growth

Detector Research & Development

M. E. Zucker

- Phase Noise Interferometer (PNI) program
- 40-meter Interferometer program
- Fixed Mirror Interferometer (FMI) program

Phase Noise Interferometer (PNI)

- Goals: to demonstrate optical phase measurement sensitivity, understand technical sensing noise sources, and test LIGO length sensing/control (LSC) components
- Recent advances:

>>Barry STACIS active isolation systems added for second vacuum chamber
 >>Recycling mirror installed, RF modulation & control systems upgraded
 >>Wavefront sensing control system installed for differential MI alignment

- Results:
 - >>Recycling gain G = 450
 - >>Power incident on beamsplitter 60 W (carrier only; P_{in} = 200 mW total)
 - >>High-frequency phase sensitivity ~ $3.5 \times 10^{-10} \text{ rad/Hz}^{1/2}$

PNI: WFS-based Alignment Control

PNI: Progress on noise spectrum

LIGO-G960219-D-00-M

PNI: plan & schedule

- Wrapup of Ar⁺ laser experiments next month
- Conversion to Nd:YAG (NPRO, .7 W) starting in December
 - >>optics & laser ready

>>laser prestabilization system being assembled/tested at Caltech

• First phase: linear cavity

>>test PSL frequency noise

>>debug new frequency control servo

• Second phase: Recycled Michelson configuration (as now)

>> prototype test of LSC high-power photodetector

>>test of LSC digital controls (still tentative)

• Tests to wrap up last quarter of '97

40-m Optical Beam Recombination

- Focus on role as a LIGO configuration testbed; reduced emphasis on displacement noise
- Key first step toward LIGO power-recycled configuration
- Explored new features & noise couplings:

>>Coupled control discriminants (nondiagonal readout)

>>Sign reversals in Michelson differential readout during lock acquisition

>>Greater dependence on uniform mirror figure (new alignment constraint)

>>First-order sensitivity to beamsplitter motion

• First test of a recombined Fabry-Perot Michelson interferometer at high sensitivity

40-m: Recombined Control Topology

LIGO-G960219-D-00-M

40-m: Beamsplitter Motion Sensitivity

Calculated and measured shot noise

40-m: Sensitivity Comparison

40-m: Suspension prototype test

- Trial of LIGO-type suspension at high displacementsensitivity
 - >>Single-loop suspension
 - >>Integrated sensor/actuators for pitch, yaw, position
 - >>High-Q attachments
- Integrated test of prototype suspension control electronics
 - >>Dynamic range, noise
 - >>Diagnostics & tuning/setup functions
- Existing 40-m suspensions limit sensitivity, repeatability & ability to generalize other tests (=>other 3 pending)
- Significant impact on SUS Preliminary Design

40-m: Power Recycling

- Program concurrent with LIGO LSC design phase; results support LSC final design
- Focus on validating
 - >>cavity lock acquisition sequence
 - >>alignment technique
 - >>modeling codes and design tools
 - >>control electronics prototypes
- Integrated system tests
- Diagnostics and commissioning exercises
- Training

40-m: Recycling Status/Plans

Installed higher-transmission input couplers

>>target recycling factor of 5 (T_{in} = 5600 ppm)

>>installation complete, currently shaking down

- Next: reconfigure vacuum envelope & input optics layout
 >>scheduled to start in November; offline preparations underway
 >>new side chamber & seismic isolation for expanded input optics
 >>new beamsplitter to be installed (in LIGO SOS suspension prototype)
 >>new RF modulation frequency to satisfy resonant condition in final stage
- Final stage: install recycling mirror

>>Currently on track for March

FMI: Wavefront Sensing Research

• Goals:

>>Validate Modal Model and its predictions for sensitivity of Wavefront Sensing (WFS) angle readouts, a critical technology for LIGO

>>Develop WFS sensor and signal processing hardware and software

>>Test concepts on a "full-configuration" power-recycled Fabry-Perot michelson

Apparatus now complete

>>Prestabilized Ar⁺ laser, LIGO-like RF length control

>>Multifrequency phase modulation + frequency-shifted subcarrier generator

>>Tabletop interferometer with PZT tip/tilt and fast/slow piston mirror actuators; aux. laser diode optical lever angle calibrators

>>5 WFS prototype heads & demodulator modules, VME digital signal processing system

FMI Configuration (schematic)

FMI: Status

- Good preliminary results with arm cavities disabled (powerrecycled simple Michelson only)
- WFS prototype hardware performance consistent with LIGO ASC requirements
- Successful trial of digital MIMO control system; correctly optimized all 6 degrees of freedom (d.o.f.)
- Now bringing arm cavities online for complete data run with all 10 d.o.f.

FMI: Preliminary Results vs. Model

FMI: Digital WFS Control Test

Closed Loop Control of a Recycled Michelson Interferometer

LIGO Advanced Detector R&D Proposal

Gary Sanders

NSF Technical Review

October 22 - 24, 1996

LIGO Research and Development Program Components

NSF "Task"	Period	R&D Activity
LIGO Construction (MRE + RRA)	1991 - 1997	in support of design and fabrication of initial LIGO
LIGO Operations	1997 - 2001	characterize initial detector systems and do gravity wave research
Visitors Program (pending)	1997 - 2001	support intermediate and long term visitors for LIGO R&D
Research Experience for Undergrad- uates (REU) Site (pending)	1997 - 2001	support undergraduate research within LIGO
Advanced Detector R&D (pending)	1997 - 2001	Support R&D to define new sub- systems and new types of detectors

Operations Supported R&D

- Gravitational wave research
- Physics environment monitoring and correlations
- Diagnostics and correlations with interferometer output
- Materials, mechanical, electronic stability
- Optical contamination, materials outgassing, laser cleaning
- Residual gas instability
- Light scattering from tubes
- Linear and nonlinear servo operation, acquisition, stability
- Availability, reliability modeling
- Site to site correlations
- Geodesy, optical, GPS
 This research will contribute to physics bottom line of LIGO

What We Propose

- A program of research to define advanced subsystems intended to be enhancements to the initial LIGO interferometers
- A program of research to define new advanced detectors
- A five year program in each thrust

>> Some areas of research will enable implementation proposals

>> Some research areas will not be completed and will become part of a following R&D proposal

• A program based upon the benchmark gravitational wave sources, but intended to be flexible if the course of physics research dictates a different evolution of LIGO capabilities

Collaboration

- Most proposed tasks are highly collaborative, involving institutions outside the LIGO Project
- These institutions will separately propose their required resources

>>very few subcontracts from LIGO to collaborators

- The proposed program is the LIGO R&D program and collaborators may propose other activities for their institutions
- It is our intention that this collaboration is the "training wheels" for the larger LIGO Collaboration. This is an important development in building this experimental field and it follows the recommendations of the McDaniel Report.

Steps in the Advanced Subsystems Research

h_{rms} Noise Envelopes for Initial LIGO and Advanced Subsystems/Detectors

Amplitude Spectral Strain Noise Expressed as an Equivalent h(f)

Astrophysics Motivations

Kip Thorne will discuss this subject

LIGO Funding by NSF Task and by Year

Fiscal Year	Construction	R&D	Operations	Advanced R&D	Total
Thru 1994	35.9	11.2			47.1
1995	85.0	4.0			89.0
1996	70.0	2.4			72.4
1997	55.0	1.6	0.3	1.7	58.6
1998	27.1		7.3	2.7	37.1
1999			20.9	2.7	23.6
2000			21.1	2.7	23.8
2001		10 months >	19.1	2.6	21.7
All funds shown in 'then'-year \$M					

Noise Classification

- Sensing noise errors in the measurement of the optical phase introduced by scattered fields and the finite number of quanta being counted
- Random forces stochastic processes that induce apparent test mass motions including thermal excitation of test masses, suspensions, seismic excitation, classical gravity gradients induced by terrestrial and atmospheric density fluctuations, radiation pressure fluctuations, etc.
- Technical noise Non-fundamental sources of measurement noise such as electromagnetic interferences, environmental disturbances, imperfections in the instrumentation, etc.

Advanced Subsystems R&D

- Double Pendulum Suspension
- Reduced Thermal Noise
- Reduced Internal Test Mass Thermal Noise: Sapphire
- Higher Laser Power and Core Optics for Higher Power
- Increased Mass (Sapphire)

Double Pendulum Suspension

One Concept:

- Added isolation from thermal noise of seismic isolation
- Reduce actuator force dynamic range
- Remove test mass magnets which degrade Q
- Reduce magnetic field and domain jump noise on test mass
- Additional stage of $(f_0/f)^2$ isolation

Double Pendulum Suspension R&D

Initial Phase

>>Stanford, GEO and LIGO will study GEO design and LIGO requirements, leading to a design configuration suitable for LIGO

>>Syracuse will study test mass losses vs. materials and attachments

>>Stanford will continue fiber growing studies

>>GEO will carry out realistic suspended element performance tests

>>GEO actuator development will be used by LIGO to support studies of actuators suitable for LIGO

Prototype Test Phase

>>A set of LIGO-compatible prototypes will be fabricated and tested in a LIGO test interferometer

GOAL IS CONSTRUCTION PROPOSAL AT END OF THIS RESEARCH

Double Pendulum Work Plan

Significant Events	Responsible	Date
Control system requirements developed	Stanford	Fall 1997
GEO control system analyzed	GEO	Fall 1997
Configuration chosen	LIGO, GEO	Fall 1998
Suspension fibers research mature	Stanford, Syracuse	Fall 1998
Attachment system research mature	Syracuse, GEO, LIGO	Fall 1998
Actuator technology research mature	LIGO	Fall 1998
Integration/selection of technologies	All	Winter 1998
Initial prototype constructed	LIGO, Stanford	Spring 1999
Initial prototype testing finished	LIGO or GEO	Fall 1999
Final design ready for fabrication, unification with thermal noise research	LIGO, Stanford	Spring 2000
Final design installed in test interferometer	LIGO	Spring 2001
Interferometer tests finished	All	Spring 2002

Reduced Thermal Noise Research

- Early phases support double pendulum suspension
- This research continues through double pendulum work and beyond, as an ongoing activity

Reduced Thermal Noise Work Plan

Topic	Responsible
SiO ₂ Materials	Syracuse
SiO ₂ Materials	Moscow State
Al ₂ O ₃ Materials (sapphire)	See separate section on sapphire
Si Materials and flexures	Stanford
Attachments	Moscow State, Syracuse, Stanford
Test mass Q measurement	Syracuse
Noise correlations	LIGO (Adv. Detector research)
Test suspension design and construction	Part of double suspension research
Complete system test in sensitive ifo	Part of double suspension research

Reduced Test Mass Internal Noise: Sapphire Development

- Develop the techniques to grow, polish and coat sapphire with all of the required tolerances to enable them to be used as end test masses in LIGO and VIRGO.
- Investigate the absorption, birefringence and optical homogeneity with the goal of demonstrating suitability for the input test masses in LIGO and VIRGO.
- Investigate alternatives to the current wire suspensions which would not degrade the high intrinsic Q of the sapphire and which give higher suspension Q's.

Reduced Test Mass Internal Noise: Sapphire Development

Significant Events	Responsible	Date
Sample Characterization Complete	LIGO, VIRGO, UWA	July 1997
Test Masses (2) Delivered	LIGO, VIRGO	Jan. 1998
Test Mass Polishing and Figure Character- ization Complete	CSIRO	July 1998
Test Mass Q, Absorption Birefringence Characterization Complete	LIGO, VIRGO, UWA	Dec. 1998
First Monolithic Suspension Results	UWA	July 1999

Higher Laser Power

- Continues LIGO development of 10 W 1064 nm for initial LIGO with Stanford and Lightwave
- Lightwave will continue development with rod geometry master oscillator-powered amplifier (MOPA) with an SBIR proposal
- LIGO will work with Stanford to apply LIGO requirements to a slab geometry design

>>A Lightwave 10 W laser will be used as the master oscillator for the resulting 100 W prototype which will be fully investigated

• This program is planned for three years, leading to an engineering proposal to be carried out with industry

Core Optics for Higher Power

- Goal of 100 W laser is phase sensitivity of 3 x 10^{-11} rad/ \sqrt{Hz}
- Achieve this by raising laser power OR by reducing optical losses OR by both
- This program proposes to follow on to LIGO Pathfinder program by extension to more demanding:

>>optical metrology - principally of mirror polish and coating phase distortions

>>optimum polishing technique for LIGO requirements

>>control of coating uniformity and absolute optical characteristics such as reflectivity and loss

Core Optics for Higher Power

Responsibilities	Collaborators	Schedule Initiate Complete
Full precision phase mapping @ 1064 nm of surface figure (upgrade)	LIGO and industry	1998 (mid) 1999(late)
Acquire, install, characterize micro- roughness instrument	LIGO and industry	1997(mid) 1998(early)
Fully calibrated surface scatter/loss test bed (upgrade)	VIRGO LIGO and industry	1998(early) 1998(late)
\leq 1ppm level coating loss measurements. $\leq \pm$ 10% bulk substrate loss mapping	EMU / VIRGO	1999(mid) 2001
Design and fabricate developmental silica mirror substrates (quantity ~30)	LIGO and industry	1998 (early) 1998(mid)
Surface polishing optimization	LIGO and industry	1998(late) 2002(early)
Coating uniformity development	LIGO and industry, VIRGO	1998(late) 2002(mid)

Advanced Detector R&D

- Resonant Sideband Extraction and Signal Recycling
- Advanced Seismic Isolation
- Signal Processing
- Measurement and Feedback of Thermal Noise

Resonant Sideband Extraction and Signal Recycling

Signal Recycling (Dual Recycling)

- Additional recycling mirror placed at the antisymmetric (signal) port to increase signal storage time
- Signal recycling can be used to narrow band the interferometer by adjusting sensitive peak frequency

Resonant Sideband Extraction

- Same general arrangement of antisymmetric port recycling mirror, but arm cavities have much higher finesse and mirror is used to reduce signal storage time
- Sensitivity can be same as in signal recycling with reduced optical power on the beam splitter
- Can also be used in a narrow band configuration

RSE/SR Research Program

- University of Florida will study dual recycling in a tabletop experiment lasting two years
- LIGO will study resonant sideband extraction in a tabletop experiment lasting two years
- An analytic study will be made by LIGO of suitable future interferometer configurations using the entire range of possibilities promised by these two techniques

>>modeling of interferometer sensitivity and response

>>modeling of optical sensitivity to distortions using paraxial FFT methods

• Following tabletop experiments, one of the techniques will be studied in a large scale test in a LIGO test interferometer

Advanced Seismic Isolation

- Initial LIGO measurement band limited by seismic noise at 40 Hz
- Goal of research is to:

>>push this envelope down to about 1 Hz such that the limiting noise source for the interferometer becomes gravity gradients

>>reduce the dynamic range required of the fine control actuators by providing isolation to frequencies as low as the microseismic peak (0.17 Hz).

• Three approaches:

>>LIGO MIT Stacis active system from Barry Controls does not meet low frequency requirements

>>JILA 3-stage active system promises low frequency performance

>>Virgo passive stack is tall and requires additional material qualification

Advanced Seismic Isolation Work Plan

Pgitt	Signiform Evens	Responsible	Date .
Near Term	Improved Stacis Isolators: Design, Fab. & Unit/Test.	LIGO, Stanford	Dec 1999
	Improved Stacis Isolators: 2km IFO Tests Completed	LIGO, Stanford	Dec 2000
	Requirements & Interface Defaution	LICIO, III.A. Stanford	Mar 1998
Long Term	Preliminary Design	HLA, Semiona, LACO	Jan 19999.
	Final Design	HILAS Stanford, I. 1610	, Jan 201010
	Rabetennen Completed	MLA	Jan 2004
	Umt Test Completed	JILA	Dec 2002

This research is expected to extend into the next five year research period

Staffing

LIGO (MIT and Caltech) Staffing Requirements

Category	FY1997 FTE	FY1998 FTE	FY1997-2001 FTE Total
scientist	2	4.5	20
postdoctoral	2.5	3	14.5
graduate student	2	3	14
engineer	0	0.5	2.5
technician	2	2.5	12
Total FTE	8.5	13.5	63.0

Top Level Activity Plan

Task	FY1997	FY1998	FY1999	FY2000	FY2001
Adv. Subsystem		<u> </u>			
Double Suspension			and algorith		
Thermal Noise					
Sapphire Test Mass					
Seismic Isolation					
100 W Laser					
Core Optics	······································				
Adv. Detectors					
Sig. Rec./Res. S. E.	بر میں میں ایک می				a and a surface of the second s
Seismic Isolation					
Signal Processing		····			
Thermal Noise					
Test Interferometers					
Conversion to 1064 nm					

LIGO Funding Request

Task	FY1997	FY1998	5 YEAR TOTAL	
Adv. Subsystem				
Double Suspension	\$211K	\$281K	\$809K	
Thermal Noise	\$22K	\$42K	\$134K	
Sapphire Test Mass	\$106K	\$38K	\$227K	
Seismic Isolation	\$10K	\$31K	\$177K	
100 W Laser	\$181K	\$231K	\$725K	
Core Optics	\$85K	\$116K	\$835K	
Adv. Detectors				
Sig. Rec./Res. S. E.	\$116K	\$146K	\$578K	
Seismic Isolation	0	\$28K	\$305K	
Signal Processing	0	0	\$151K	
Thermal Noise	0	0	\$20K	
M&S TOTAL	\$732K	\$912K	\$3960K	
STAFF TOTAL	\$1009K	\$1752K	\$8460K	
TOTAL	\$1741K	\$2664K	\$12420K	

Collaboration

- For 1997, LIGO has appointed Seiji Kawamura and Mike Zucker as Task Leaders for Advanced Detector R&D
- We will work with our collaborators to form effective coordination of this research
 - >>Periodic group meetings of each task group
 - >>Periodic meetings of the LIGO Collaboration
 - >>Widely circulated progress reports
 - >>An annual comprehensive workshop
 - >>Institutional representation

Collaboration

• This collaborative proposal combines

>> LIGO expertise in system design and LIGO capability to integrate into detector system

- expertise in system tradeoffs
- unique facilities
- extensive research with suspended optics interferometers
- >> expert research groups (including LIGO) around the world
- During the next six months, the collaboration will be formed
- January, 1997 Aspen Meeting will focus on Advanced Detector R&D

During 1997...

- Modify 40 Meter Interferometer and MIT Interferometer to accommodate double pendulum, 100 W laser, RSE/SR research
- Analyze double pendulum control system with GEO
- Complete sapphire sample characterization
- Define 100 W laser research with Lightwave
- Acquire micro-roughness instrument and initiate characterization research
- Commence resonant sideband extraction table top experiment and supporting analytical work THESE ACTIVITIES INDEPENDENT OF NSF REVIEW OF COLLABORATORS

NSF Technical Review of the LIGO Project

Advanced R & D Proposal

Kip Thorne October 22, 1996

1 of 8

LIGO-G960220-00-M

SENSITIVITIES AND SOURCE STRENGTHS

NEUTRON STAR BINARY LASPIRAL & MERGER (our best understood source) Estimated Distances for One Event Per Year DExtreme Optimistic: 50×106 1.yrs. (VIRGO) 2) Conservative Best Guess: 500×106 2.yrs. 3) Extreme Pessimistic: 2×10° 2.yrs.

INEUTRON STAR DINARY INSPIRAL & MERGER (our best understood source) Istimated Distances for One Event Per Year DExtreme Optimistic: 50×106 1.yrs. (VIRGO) 2) Conservative Best Guess: 500×106 2.yrs. 3) Extreme Pessimistic: 2×10° 2.yrs.

3)

UTHER DOURCES

Source	First	Enhanced	Advanced
Nonaxisymmetric Stellar Core Collapse (Supernovae) Lif can develop near optimal data analysi algorithms]	~50×106 S.yr.	~500×106 l.yr.	~J.5×109 I.yr.
Spinning N.S.'s (pulsers)	$\left(\frac{\varepsilon}{10^{-6}}\right)$	<u>30,000 l.yr.</u>) r	$\left(\frac{1}{P}\right)^{2}$
Broad-Band Narrow-Band	<u>1</u>	0.2	 2×10-3
Stochastic Background	$ \Omega_g = \left(\frac{\alpha}{E}\right) $	GW energy in Energy to clos	Df=f OUNIVERSE)~
Broad-Band Narrow-Band	~3x10-7	~37109	~ 3x10-10 ~ 1x10-10

Facilities and Vacuum Equipment Mark Coles

Presentation Objectives

- Review project objectives of last 6 months
- Show how we are implementing designs that satisfy design requirements.

Vacuum Equipment John Worden, Cecil Franklin, Allen Sibley

Objectives for Last 6 Months:

• Chamber fabrication:

- BSC prototype fabrication, cleaning, and test
- Prototype bakeout heater blankets/controller delivery and test
- Raw material order steel plate, forgings, heads
- Initiate fabrication of HAM chambers
- Purchased equipment:
 - Delivery of 4 main turbopump carts, 2 auxiliary turbo carts
 - Delivery of 2 main roughing pump carts
 - Delivery of eight 48" gate valves
 - Delivery of prototype large ion pump
 - Clean rooms ordered

The second s

 $\hat{\Sigma}$

Preliminary 100 Hour bakeout test results

- The cleaning and baking procedures were very effective.
- There was little evidence of hydrocarbon contamination after the bakeout. Partial pressures of hydrocarbons were 3 to 4 orders of magnitude below hydrogen.
- Principal gas loads after the nitrogen soak are hydrogen, water, nitrogen.
- 100 gas load for nitrogen exceeds LIGO goals. Additional testing underway to determine source of N2.
 - Formal data review meeting Oct. 30 at PSI

·	TABLE 1.7
BSC	100 HR TEST
VERTEX + BEAI	MMANIFOLD PREDICTED

ſ

	BSC	ļ	1		VERTEX + MAL		1	·
AREA (M^2)	2650	0	•	·······	37639	1		
VITON/SS_AREA	48.1	8			478			
	GAS	SPECIFIC	SPEED	Pressure	RATE	SPEED	Pressure	Pressure
	Torr-L/s	RATE Torr-L/s-cm ²	approx.	Torr	Torr-L/s-cm ²	L/S	Torr	GOALS
H2 H2U N2 C0 C02 C114 OTHER	5.5E-06 5.5E-06 5.5E-06 2.8E-06 2.8E-07 8.3E-07 6.1E-07	1.0E-11 1.0E-11 1.0E-11 5.0E-12 5.0E-13 1.5E-12 1.1E-12	535 290 237 237 190 290 190	1.03E-08 1.90E-08 2.32E-08 1.16E-08 1.45E-09 2.84E-09 3.18E-09	1.00E-11 1.00E-11 1.00E-11 5.00E-12 5.00E-13 1.50E-12 1.10E-12	12000 20000 8000 8000 8000 8000 8000 800	3.983E-09 2.39E-09 5.975E-09 2.988E-09 2.988E-10 8.963E-10 6.573E-10	5.0E-09 5.0E-09 5.0E-10 5.0E-10 2.0E-10 2.0E-10
SUM		. <u>.</u>		7.15E-08			1.719E-08	1.19F-08

۲

48" gate valve status

- 2 of 8 gate valves delivered (the 2 we need now)
- Design problems encountered due to LIGO's unique requirements:
 - no lubricants
 - vacuum load either side
 - low shock and vibration req't

Remaining Gate Valve Deliveries for Hanford

- 48" Gate valves
 - items 3 & 4 10/31 (electric)
 - items 5 & 6 11/30 (pneumatic)
 - items 7 & 8 12/19 (electric)

Need dates are not on critical path

LIGO-M960113-00-P

QUALITY ASSURANCE PROCEDURE

FOR

EQUIPMENT/MATERIAL RECEIVING INSPECTION OF ROUGHING PUMP SYSTEM

OCTOBER 18, 1996

from Bill Tyles

Equipment / Material Receiving Inspection Procedure Roughing Pump System

1.0 The Receiving Inspector will verify that all equipment and material received is listed on the shipping documents and properly identified.

1.1 The Receiving Inspector will inspect all items for any evidence of shipping or handling damage.

1.2 The Receiving Inspector will verify dimensions of critical components, when required by LIGO documents.

1.3 The Receiving Inspector will document his inspection on a receiving Inspection Report (RIR, JPL form # 1898 or equivalent).

1.4 Any nonconformists found including missing items, incorrectly made items, incorrectly, identified items and damaged items will be documented and reported to the LIGC Contract Manager and /or LIGO Procurement Officer.

1.5 After receipt the equipment or material they will be properly stored and maintained in an appropriate location to insure proper protection again the elements.

1.6 Storage and maintenance will be performed in accordance with the manufacture's requirements.

2.0 The End Item Data Package (EIDP) will contain all critical data pertinent to each systems.

- Evidence of acceptance by Vendor or Supplier's
- A set of Drawing and Procurement Specification.
- Copy of Purchase Order.
- Requirement for Test Certification
 A. Acceptance Test Report / Data
 B. Dimensional Inspection Report
- Calibration Records
- Applicable Maintenance Procedures and Schedule.
- Safety constraints applicable to the equipment / material or personnel handling it.
- Any other data which may be required for preservation storage continued operation or repair of the equipment.

2.1 On completion of the (EIDP) acceptance, delivery, installation, qualification, operation or other processes for which availability of the (EIDP) may be a requirement the (EIDP) will be forwarded to the LIGO Project Document Control Center for recording and storage.

2.3 The End Item Data Package and the Receiving Inspection Report together with any associated documentation received with the equipment or material are part of the contract / procurement record and will be maintained / availability the LIGO Purchasing Officer.

Beam Tube

Larry Jones, Rai Weiss, Cecil Franklin, Rich Riesen, Allen Sibley

- Beam tube fabrication achievements of preceding 6 months:
 - Delivered spiral tube mill and qualified performance
 - Qualified other fabrication eqpt and fixtures
 - Processed stainless steel batch #2
 - fabricated and delivered 16 expansion joints
 - 300 fabricated and 200 delivered baffles
 - 55 tubes fabricated
 - 27 leak checked (no failures!)
 - 7 cleaned

LIGO-T95000x-xx

-151 Par Wars

~/

			•					
Date	Tube#	cond,	residue	evap.	KBr	gain	absorp.@	z
			mg/liter	сс	cm ²		2950cm ⁻¹	x10-4
12/14/94	22A	uncl	14.5(6.0)	200	0.64	1	1.2(0.55)	5.0
12/14/94	22A	cl	7.5(6.0)	200	0.64	1	0.7(0.55)	1.0
12/15/94	22B	uncl	9.0(6.0)	100	0.64	1	0.95(0.27)	10.0
12/15/94	22B	cl	2.0(6.0)	100	0.64	1	0.35(0.27)	1.0
								-
09/25/96	B001	cl	12.0(1.6)	100	0.32	1	0.70(0.04)	5.0
10/01/96	B003	uncl	4.8(1.6)	100	0.32	5	0.08(0.04)	1.1
10/01/96	B003	cl(on)	3.2(1.6)	100	0.32	5	0.10(0.04)	1.7
10/02/96	B002	uncl	3.2(1.6)	200	0.64	5	0.08(0.03)	0.4
10/02/96	B002	cl(on)	2.0(1.6)	200	0.64	5	0.10(0.03)	0.6
10/02/96	B002	cl(off)	0.8(1.6)	200	0.64	5	0.07(0.02)	0.4
10/03/96	B004	uncl	3.2(0.8)	200	0.64	5	0.20(0.02)	1.3
10/03/96	B004	cl(on)	1.6(0.8)	200	0.64	5	0.14(0.02)	1.0
10/03/96	B004	cl(off)	0.8(0.8)	200	0.64	5	0.10(0.02)	0.6
10/04/96	B∩05	cl(on)	2.8(0.8)	200	0.64	5	0.15(0.02)	0.9
10/04/96	B005	cl(off)	2.4(0.8)	200	0.64	5	0.05(0.02)	0.2
10/09/96	B001	cl(on)	2.4(0.8)	200	0.64	5	0.09(0.03)	0.4
10/09/96	B002	cl(on)	0.8(0.8)	200	0.64	5	0.04(0.03)	0.1
10/09/96	B003	cl(on)	0.8(0.8)	200	0.64	5	0.08(0.03)	0.4
10/11/96	G001	cl(on)	0.8(0.8)	200	0.64	5	0.06(0.03)	0.25
0/11/96	I001	cl(on)	1.2(0.8)	200	0.64	5	0.07(0.03)	0.3

Table 1: Summary of FTIR measurements

The samples for FTIR analysis are taken by pouring 2 liters of HPLC 2-isopropanol along the length of the tube in a channel about 10 cm wide. The fluid is collected in clean beakers at one end and samples are sent to an analytic chemistry laboratory for evaluation. The laboratory evaporates

page 5 of 9

a known quantity (usually 200 cc) of the isopropanol onto a Potasium Bromide crystal slide for insertion into the beam of a Michelson interferometer with sensitivity between 400 to 4000 cm⁻¹. The results of the measurements are given to CB&I and the LIGO project in the form of transmis-

sion and absorption curves. The laboratory provides the absorption as $A = -\log_{10} \left(\frac{1}{T}\right)$

The notation used in Table 1 is the following. Numbers in parantheses are the values for the isopropanol reference. During the QT there was a large variation in the reference values ultimately traced to the use of "dirty" sample collection vessels. The sampling method has been changed in Pasco and the consistency and reliability of the measurements has been greatly improved. In the column indicating the conditions, the designation uncl means sample taken before the tube was cleaned, cl(on) is a sample taken along the same azimuthal position in the tube as the drain during the cleaning and rinse while the designation cl(off) is a sample taken after the tube has been rotated to provide more typical surface conditions in the tube. Samples taken on the drain line have more contamination than those off the line. During routine production CB&I will be measuring every tenth tube by sampling on the drain line. The column labeled residue is a first order measurement of the contamination provided by weighing the residue after the sampling isopropanol has been evaporated. The columns labeled evaporated volume, area of the KBr spectrometer sample plate, gain and absorption at the C-H stretch band at 2950 cm⁻¹ are used for internal checks of the FTIR data. The last column listing the specific absorption, z, at 2950 cm⁻¹ is the best estimator for the hydrocarbon contamination on the surface. The specific absorption is defined as

 $z = \frac{(\ln(I/I_0)_{\text{sample}} - \ln(I/I_0)_{\text{reference}}) \times \text{KBr area} \times \text{sample volume in tube}}{\text{sample volume evaporated on KBr} \times \text{area of tube exposed}}$

tube #	condition	0 min	1 min	2 min	3 min	4 min
22B	uncl	57.4	24.3	16.5	11.8	10.8
22B	cl	26.1	8.1	6.5	4.4	5.1
B-005	uncl	59.5	17.6	10.6	8.3	7.1±1.0
B-005	cl 1	24.3	5.2	2.3	1.0±1.0	0.0±1.0
B-005	cl 2	21.9	6.7	2.1	1.0±1.0	0.0±1.0

Table 2: Auger analysis 270 ev Carbon line given in terms of 10' c	counts in 1.64 minutes vs
A ⁺ milling time	

Auger electron spectra are taken on strips of the steel that have been cut from the same material as the tube. One coupon is not cleaned (uncl) and another (cl) is placed at the drain end of the tube a few mm above the surface. This sample experiences the same cleaning as the tube itself. When analysed in the Auger electron spectrometer the Auger electron peak for Carbon is mea-

Oversite of Beam Tube Fab

- Cecil Franklin, Rich Riesen providing fulltime surveillance of factory and site installation activities.
- Daily log kept, copies sent to Caltech each week.
- Specific fab activities that are witnessed get logged on QA sheets

BEAM TUBE ASSEMBLY ACTIVITIES

NOTE: CLEAN CLOTHING AND SHOE COVERS SHALL BE WORN FOR WORK INSIDE THE BEAM TUBE

LEAK TESTING ACTIVITIES

2

! .

LIGO TUBE SECTION LEAK TEST REPORT

UBE ASSY. B-005	571 (Hanford ivingston					
I UBE SECTION I.D. NO. CONTR	ACT LCCATION (Circle One)					
Procedure and Rev. HMST1N Rev. 47D	HMS Leak Detector (Mfg., Model and Serial Number)					
System Stanciant Helium Leak ID	VARIAN 160 Y/N DRAF 6003					
VTI 5/N# 2128	$5/\mu$ 2128 2.6 x 10 ⁻¹⁰ atm. cc/sec.					
Basis for HMS Leak Indicator Division	HMS Element Pressure During Test					
Unit of 2 on 10 ⁻¹¹ Scale (50 divisions to a scale)	BOTTOM OF SCALE TOT					
Tube Section Absolute Pressure (P1) During Test	D.P. Foreline Absolute Pressure (P2) During Test					
2.2 X 10 -6 Torr	1.7 X 10-2 Torr					
Observed Clean up lime: 25 SECONDS RESPON	DE TIME LO SECONDS					
M1 (Initial Helium Signal) [div on 10 ⁻¹⁰ scale, x 10]	= 75 divisions on 10" scale 1.5 X 10-10					
M_2 (Background Signal) [div on 10 ⁻¹⁰ scale, x 10] =	divisions on 10 ⁻¹¹ scale					
Preliminally system consistivity $(S_1) = Leakage Rate of Std. M_1 - M_2$	Leak = $3,77 \times 10^{-12}$ atm cc / sec / division \bigstar					
Hood Pressure $(P_{hood}) = 7/6$ torr.	Helium concentration = 7 4 %					
Helium concentration connection factor (C) = $\frac{P_{\text{root}} - x}{760 \text{ torr } x \% \text{ He}}$	Heimin concentration connection factor (C_) = $\frac{P_{\text{int}}}{760 \text{ forr x % Helium}} = 1, 28$					
M ₃ (Test Helium Signal) [div on 10 ⁻¹⁰ scale, x 10] =	1 divisions on 10 ¹¹ scale					
M4 (Final Calibration Signal) [9 div on 10 ⁻¹⁰ scale, x 10	$D] = \frac{90}{100}$ divisions on 10 ⁻¹¹ scale 1.8 × 10 ⁻¹⁰					
Final system sensitivity (Sa) = Leakage Rate of Std. Leak	$= 2.92 \times 10^{-12} \text{ atm } \text{cc/sec/division} \neq$					
Final Test Sensitivity (S _F)						
$S_{\rm F} = S_2 \times C_{\rm he} = \frac{3,73}{1000} \times 1$	0 ⁻ / ² atm cc / sec / division +					
Final Observed Leakage Rate (Q_F) = ($M_3 - M_2$) x S _F =	$O = x 10^{-1}$ atm co/sec.					
Check Applicable Box(es): Weld repairs were made during leak testing and have been visually inspected and re-tested and found acceptable. See VT Report No						
Tests were performed and all leakage was evaluated in accordance with the referenced procedure. Defects not repaired and retested during testing are recorded above as to location and disposition. All other tested areas included in this report were found acceptable.						
COMMENTS: * Minimum Chance is Simmed on can be 4 dissioner. = S, = 1,508 × 10°; So	10" scale of Varian 960 = 1.17 x 10"; Sr ? 1.49 x 10" resolution/sensite.					
Q Bund Sh.	9/18/96					
Results reviewed by: 1000000000000000000000000000000000000	9-19-96 DATE					

ACTIVITY BEAM TUBE ASSEMBLY MONITORING LOG

r	DATE	DEDCOM	TURENO	ACTIVITIES
	DAIE	PERSON		A li la
	10-9-96	CWFRANKLin	B-020	Splicing of Cous - Joint preps/ avignment of 6 Ap/ US Insp.
	6.9.96	CW Franklin	T-001	Verify steam cleaning inside of BIT assis.
· - []	10-9-96	1 in Fronklin	T-001	Verily removable of water trapped in Pump Port.
1-	0-9.96	14 F-ronthi	A-017	Monitor expanision foint fit up and welding.
ľ	1-9-96	PW. Frankt	A-016	Monitor litting of stillener and support sinces
/	h-a-GI	CW. Franklein	A-013	Monitor Helitin Hossi Space. Test of B/T ASSY
ľ	10-296	Mu. Franklin	A-011	Monitor Heliun Mass Spea, Test of BIT ASSY
ľ	10-10-91	Cu Fronkli	T-001	Monito installation and keluin men Spec.
	·.			lead testing Ping Port Shut off value.
Ì	10-10-94	CW. Franklin	A-005	Monitor Belin Mars Spee. Least Testing
ľ	:0-1096	Ca) Frankle	A-012	Verity expansion wint bit many and theating
	1116-96	(15 hartin	B-016	Verily Visual inspection and Weld sick up
	10-10-96	Cu Franklin	R-021	Sourd forming Gop and alignment
	10-10-9	(Pu) Frankli	B-DZI	Course formers and Goo and alignment
	μ_{i}			
	11-11-96	PLISTANDE	T-001	Monitor Helium mass spec. Funitiaine TCH 12=
	10-11-91	(A) FAARK	RAIS	Monitor Helden Mass Dill, Testing
	10-11-0	VUSANT.	T-001	Monition unapplier and roading on tillch 1 -
	10-11-1	<u>u - 4/ 1/ 1/ 14.001</u>		sibility manif to ike site an 10-14-96
	16 1101	- and and AD	: 0 071	Internet Marian Engen
	10-11-96	Cognanne	1 H-ULL	Lel stree in MAASD Schamp
	10-11-7	6 11 1. 1. 1.	A-022	William Hilling Cont
r	10-17-9	6 . M	· H-019	Wither have the

JPL QA

BT installation

- Installation:
 - weld enclosures, air filtration system delivered to site
 - first gate valve installed
 - high precision site survey completed to provide reference locations for BT installation
 - installation readiness review completed

16

Installation Readiness Review Meeting

CLEAN ROOM SYSTEM

Beam Tube Enclosure

- Objective:
 - 700 pre-cast BTE's on site by 9/1
 - Installation contract placed to have BTE installer work approx 3-5 sections behind CBI.
- Status:
 - ACME manufacturing 17 enclosures/day
 - Lavernier and ACME agreement to provide
 "just in time" delivery

BTE Fab QA

- BTE's inspected by RMP in ACME yard.
- Rejection is 10/1000
- No stress cracking found. Normal shrinkage cracks only
Civil Construction

- WA site
 - completed finish grade and slip form of slab
 - completed service road and distributed electric power along arms
 - Completed precast approx 1500 BT enclosure segments
 - demo'd installation technique
 - completed final design and initiated construction of WA bldgs
 - awarded BT enclosure installation contract

·· ·-

í i

Precision Survey Allen Sibley

- Site fiducialization by Rogers (local) and IMTEC (Kansas City)
- Combination of differential GPS and optical methods
- Rogers elevations and ranges dGPS
- IMTEC elevations and lateral optical

Point	Rogers survey relative to RMP model (mm)	IMTRC survey molething to DBAD		······································
1		in the survey relative to Kivir model (mm)	Delta (Rogers - IMTEC)	IMTEC best fit plane
	0	0	0	0
	-6	-4	-2	Ň
3	-6	7	12	Y
4	6	5	-15	-)
5	2	.	11	0
	-3	0	-3	_1
6	3	5		
7	3	2	-2	4
8		2	1	4
0	3	0	3	0

1

		the second s
IN ITTAL	•	
114/1 CHC Clabetraal	magnining	
- 691 1 632 - 51701511670	HIRCELLAUUV	$\pm / $ $i mm$
	oncontentity	- <i>i / - i i</i> iiiiii
	/	

Ņ

5 6 7

8

BT Alignment

- QA contract with Rodgers to spot check early CBI measurements
- CBI will use differential GPS
- Max alignment range of BT support is 3 inches. Want to center BT within this range.

WA bldg status Otto Matherny

- Bldg construction status
 - mid and end station footers installed
 - conduit for power and data acquisition and control installed
 - vaults and power for bakeout and site power installed
 - conduits to chiller yards from mid and stations placed.

LA site civil construction

- completed final design for LA bldgs
- completed bid on bldgs, BT enclosures/slab
- close to completing rough grade work in LA
- power lines raised over site

LA Civil Construction Status

Otto Matherny, Fred Asiri

- Bids opened for slabs, enclosures, roads, buildings
 - apparent low bidders within budget.
- Rough grading:
 - It rains a lot in LA
 - approximately 150 days lost to weather delay
 - arms at full height since July
 - should allow sufficient time for settlement for Feb 97 slab installation
 - monitoring of settlement plates to look at creep rate.

LA Bldg Design

- Final design completed May 96
 2 IFO design
- Reviewed by Baton Rouge architectural firm for standard practices and materials
- Recommendations incorporated into final design
- Architectural approval obtained from LSU per site agreement

LA Civil Construction QA

- PSI (LA) monitors compaction work
- Parsons Construction Mgr on-site
- QA audit of record keeping LIGO QA (Bill Tyler)
- CM record keeping audit by Otto, Fred

I

Summary

- All major facility contracts obligated or about to be.
- We have entered a very busy phase of activity civil construction, fabrication, and installation activities underway at both observatory sites and at vendors
- We are executing QA oversite plans to maintain requirements and schedule.
- No indications of significant cost growth
- No show stoppers so far

LIGO Data Analysis Data Formats and Modeling Activities

Albert Lazzarini LIGO Integration Group

NSF Fall Review 22 - 24 October 1996

1

1 t

LIGO-G960211-00-E

OUTLINE

- 1. Data Analysis System for the Initial LIGO Detector
 - >> Science requirements/computational requirements
 - >> Preliminary concept
 - Data analysis flow
 - Distribution of computing resources
 - Access to resources -- network options
 - >> Ongoing & planned activities; issues

2. Data Formats for LIGO Detector

- >> Status of collaboration with VIRGO
- >> Common format -- VIRGO model
- >> Unresolved issues
- **3.** Modeling & Simulation Activities in LIGO

Data Analysis for Initial LIGO

- LIGO Construction Phase includes Data Acquisition System (LIGO DAQ)
- Archival & Analysis Systems fall within scope of Operations Phase.
 - >> Need will grow gradually during detector commissioning
- McDaniel Panel Report to NSF identified need to develop analysis capability to support both Laboratory and Collaboration research:
 - >> Computing systems for LIGO; networks -- WAN; maintenance & management of resources
 - Scheduling Power required for more complex searches
 - >> Data distribution and availability -- PAC consultation
- LIGO is developing a conceptual plan for initial data analysis system which will be accessible to both Laboratory and Collaboration:
 - >> Outline prepared for Fall 1996 NSF Review
 - >> Refinement of requirements and concept to be conducted in conjunction and in consultation with broader community (LRC).
 - >> White paper to be available Spring/Summer 1997.

	Data Analysis Requirements Science & Computational Requirements						
	Initial LIGO Sources and Estimated Analysis Capability Requirements						
	Sources Initial LIGO Dat		a Analysis Requirements				
	Supernovae	$\Re_0 \sim 2 - 3/$ yr @ 15 Mpc If sufficiently asymmetric	Minimal for straightforward	Minimal Need PEM/houskeep-	On-line analysis desir- able for correlation with other astrophysics:		
Burst Signals $\Delta T < 1s$	BH/BH Collisions	ℜ ₀ ~ 1/ yr(?) @ 500 Mpc; M _{BH} ~ 30 - 200M _{SUN}	correlation; if optimal filters are discovered, problem may increase in complexity.	ing data for veto	Electroweak • visible/radio/γ (HETE, GRO) • V (Super-K/SNO) Gravity • VIRGO/GEO • Resonant bars • Waveforms unknown • 2x/3x IFO correlation • Off-line analysis to		
	NS/NS Inspirals	$\Re_0 \sim 3/$ yr @ 23 Mpc; $\Delta T \sim 4 \times 60$ s $M_{NS} \sim M_{SUN}$	~ 2 GFLOPS	Templates/Data	 enhance SNR On-line analysis for M_{NS}>M_{SUN} can be done; appears feasible down to ~ 0.3 M_{SUN} 		
Chirped Waveform 10s < ΔT < 1000s	BH/BH Inspirals	$\Delta T \sim 4 \times 500 \text{ s} M_{NS} \sim 0.3 M_{SUN}$ $\Re_0 \sim 1 / \text{ yr} @ 150 \text{ Mpc};$ $\Delta T \sim 4 \times 10 \text{ s} M_{NS} \sim 10 M_{SUN};$	~ 50 GFLOPS ~ 2 GFLOPS	~500 GB /~10 GB ~20 GB /~1 GB	 2x/3x correlations feasible depending on SNR. Coalescence event may generate correlated (EW) signals as above. PEM/housekeeping needed for vetoing Template matching (Wiener filtering) or wavelet analysis in f-t domain. 		
					Off-line analysis to enhance SNR		

Data Analys. 3 Requirements

Science & Computational Requirements

leviews	Sources	Initial LIGO	Data Analysis Requirements		
ŇS	Sources	Performance Estimate	CPU	Storage	Comments
$\begin{array}{c c} & Periodic & \mu & 96\\ Signal & Signal & & \\ & \Delta T \sim 10^6 - 10^7 s & & \end{array}$	Pulsars with mass asymmetry $h \propto \left(\frac{\varepsilon}{10^{-6}}\right) \left(\frac{10 \text{kpc}}{\text{r}}\right) \left(\frac{1 \text{ms}}{\text{P}}\right)^2$	$\varepsilon = 3 \times 10^{-5}$; r=10kpc; P=1ms $T_{int} = 10^{6} s$ SNR ≈ 5	Directed searches (e.g., galactic center, known pul- sars) require minimal resources All-sky searches require tens of TFLOPS beyond anticipated capabilities	10 GB for 10 ⁶ s (GW waveform)	 Off-line analysis Detection less sensitive to non-Gaussian noise; more sensitive to cali- bration drifts&drop-outs Detection techniques as for pulsars narrow line sources with modulated frequency. Correlations among interferometers may be performed (if needed) after detection. All-sky search requires decomposition of 4π sr into >10¹⁰ pixels, each region requiring a differ- ent spectral transforma- tion of seven dynamics
$\begin{array}{c} \text{Broadband}\\ \text{Signals}\\ \Delta T \sim 10^6 - 10^7 \text{s} \end{array}$	Stochastic Background $\Omega \equiv \frac{\Omega_g}{\Omega_0}$	$\Omega \ge 3 \times 10^{-6}$ $\Delta f, f \approx 100 Hz$ $T_{int} = 10^{7} sec$	Minimal requirements analysis maybe done on single workstations		 Off-line analysis Requires multiple inter- ferometers to be corre- lated; may use PEM to imprive SNR.

Initial LIGO Sources and Estimated Analysis Capability Requirements

LGO

LIGO Data Stream and Data Frame Design

- Frame is (structured) self-contained snapshot of data for a period of time
 - GW channel & ancillary IFO channels
 - Environmental monitoring (veto) channels

5

Facilities/Vacuum health & status

LIGO Data Analysis Flow --Baseline

Data Analysis for Initial LIGO On-line Processing Computing Resources & Distribution

- Redundant systems at LA & WA Observatories
- Support for 1x, 2x, 3x operations independently
 - >> <u>Diagnostics</u> -- especially during commissioning
 - >> 2x/3x operations between sites feasible with reduced datastreams
 - Transient/burst signals ($\Delta T < 1s$) -- GW + superveto/QA
 - Inspiral & coalescence waveforms (10s < ΔT < 1000s)
 -- events

System configuration (target: M_{NS}>0.3 M_{SUN})

- Volatile data storage for 3 hours of data + 3 hours of analysis (FIFO) for 2 IFOs (WA) @ 100% data stream: 125GB+125GB
- >> Template storage for:300 GB
- >> ~ 2-50 GFLOP CPU system -- intrinsically parallel computational requirements:
 - Parallel processor(s) -- *monolithic/efficient/more expensive*
 - Workstation cluster -- versatile/less efficient/less expensive
 - Specialized (DSP) system -- less versatile/efficient/least expensive/upgrade difficult

LIGO-G960211-00-E

Data Analysis for Initial LIGO On-line Processing Computing Resources & Distribution

- System configuration (cont.)
 - Site-to-site communication link to provide 2x and 3x realtime cross-correlation
 - Selected (pre-processed) data subsets (GW + super-veto; event lists)
 - Two way: WA->LA & LA->WA
 - Can support independent algorithms
 - T1: 0.2 MB/s is barely sufficient for GW WA->LA
 - T3 (6 MB/s) or ATM (20 MB/s) will be available by time needed

Data Analysis for Initial LIGO On-Mine Processing Computing Resources & Distribution

LIGO-G960211-00-E

Data Analysis for Initial LIGO Off-line Processing Computing Resources & Distribution

- Single system at a LIGO Laboratory University*
- Supports analyses either not feasible or not required on-line.
 - >> Stochastic background
 - >> Pulsar searches (directed/partial sky)
 - >> Inspiral with combined IFOs (vector data for max. SNR)
 - >> Research on algorithm development & signal processing
 - >> Refined analyses
 - >> Novel searches
- Provides/manipulates data archive.
 - Data access via WAN to other LIGO sites and users.
 - Utilizes and is designed around existing University resources for maintenance, availability, communications & support.

Data Analysis for Initial LIGO Office Processing Computing Resources & Distribution

- System configuration (target: max. capability for multiple users)
 - >> Large data archive (~ 500 TB/yr => 10k tapes/yr @ 50 GB/tape => \$0.5M/yr @ \$50/tape)
 - >> Robotic tape access -- size TBD
 - >> Disc cache system capable of storing 450GB of data
 - 8 hours of 100% data ~ 450 GB
 - ~ 5 weeks of GW data (suitably filtered to not require ancillary channels)
 - Processors for computationally intense analyses (100+ GFLOPS)
 - Support multiple, independent analyses (4 6)
 - Parallel processor(s) -- *monolithic/efficient/more expensive*
 - Workstation cluster -- versatile/less efficient/less expensive
 - Distinctions will fade with time
 - >> High bandwidth communication to other LIGO sites & collaborating institutions
 - T3 (6 MB/s) or ATM (20 MB/s)

Data Analysis for Initial LIGO Off-line Processing Computing Resources & Distribution

LIGO-G960211-00-E

LIGO Site-to-site Communications

- >> Hanford-Livingston link permits real-time crosscorrelations among instruments
- >> Caltech-MIT link provides high speed link to data archives; data tapes to be archived at university.
- >> Site-University links provides site scientific staff access to archived data
- >> University gateways provide broader access to database
- >> Data tapes transported to University repository

LIGO-G960211-00-E

Site Communications

- Options for utilizing existing resources -- these are being explored:
 - >> Caltech:
 - HEP link to MIT/CERN (DOE:ESNET; plan: OC12@70+MB/ s)
 - IPAC/JPL link to NASA backbone (NASA)
 - CACR link(s) to SC centers (NSF: VBNS->OC12@70+MB/s))
 - >> MIT:
 - HEP link to Caltech/CERN (DOE ESNET)
 - NASA backbone (NASA)
 - Link(s) to SC centers (NSF VBNS)
 - >> Livingston:
 - LSU link to MSFC/NASA backbone (NASA)
 - LSU link to SC centers (NSF VBNS)
 - >> Hanford:
 - HNR/BNWL (DOE ESNET)

Planned Activities Timeline for Development

Milestone or Event	Date	Communications	Hardware	Software
Begin Coincidence Operations	7/00		Common	
On-Line System Available	1/00		Common	ioi I
	3/99-12/99	ntation	Procurement & Integration	unt Verificat
	11/98	plene hents	Specifications	
System FDR	11/98	In Baren	Design & Prototyping	Specifications Design & Prototyping
System PDR	11/97			
System DRR	5/97	Ĩ♥		riotorypnig

Ongoing Activities Prototyping

- Detector construction phase is developing a prototype DAQ system for the 40m facility
 - Vtilize 40m to acquire datasets of substantial length (1/2 day) on a regular basis
 - >> Experimental use of ancillary channels for data qualification
- LIGO co-authored joint proposal for IBM Sponsored University Research (SUR) Grant funding - \$800k of processor hardware will be awarded
 - >> LIGO will participate in hardware configuration definition; to be shared with other campus groups
 - Hardware to be installed at Center for Advanced Computing Research (CACR)
 - >> CACR already has similar NSF-funded hardware for astrophysics data analysis
- Use ongoing work to provide realistic scaling of parallel analysis algorithms for large data sets
- Establish data link from 40m to CACR

Issues

- LIGO Analysis System design must contend with two conflicting needs...
 - >> Rate of technology growth argues for delaying investment in hardware to the latest possible moment...
 - >> Need to develop/debug analysis software on specific platform(s) to support detector commissioning. COTS & strict adherence to standards.
- Efficient utilization of 40m prototype DAQ system and CACR is key to developing an extensible, modular system which is capable of providing LIGO Laboratory & Collaboration adequate analysis tools for the first generation detectors:
 - >> Validation of software
 - >> Identification of best hardware approaches
 - >> Benchmarks for on-line processing

Issues (cont.)

- Efficient use of detector ancillary data channels is key to containing archive growth
 - 100% data stream corresponds to >10⁴ tapes/year;
 - GW channels correspond to <10² tapes/year
- Actual cost of archival is bounded...
- Two approaches possible...
 - >> Start with minimum channel count and add channels as experience dictates through commissioning phase
 - Start with 100% channel count and pare back as experience dictates
 - >> First option more reasonable and less costly.
- During definition phase, LIGO will actively seek LRC representation in design inputs.
 - >> This is the first presentation by LIGO
 - >> Process will take a year or more

LIGO-VIRGO DATA FORMAT Status

- Initial meeting with VIRGO in April hosted by LIGO
 - >> VIRGO format presented, compared with LIGO needs
 - > Attractive (to LIGO) because of maturity & availability of existing I/O libraries
 - >> Tuned for time-series data stream (vs. events or images)

Alternatives explored by LIGO

- >> Public domain standards CDF/HDF
- >> Used for image frame data distribution (NASA)
- >> Greater overhead per frame than VIRGO
- >> Well suited for eventual data distribution
- Continued interaction with VIRGO
 - >> Format evolving under collaborative effort
 - >> Software availability: commited to public domain access
 - >> Joint approach to be presented at TAMA Fall Meeting in Japan

LIGO-VIRGO DATA FORMATS

PROPOSED FORMAT (Adopted from VIRGO)

- >> FRAMES (unit of information containing all information needed to understand the interferometer behavior over a finite time interval)
- >> C STRUCTURES (frames are organized as a set of C structures)
- >> FRAME HEADER (holds pointers to additional structures that contain all information)
- >> LINK LISTS (used to collect generic data types, PEM, ADC, etc.)
- >> HEADER HOOKS (pointing to frame elements used by on-line processing or by off-line reprocessing)
- >> 2^N DATA POINTS (allowing faster FFT analysis on individual frames)
- >> DICTIONARY (acts as a catalog of C structures and pointer offsets)

LIGO-VIRGO DATA FORMAT

- Frame has tree structure:
- Individual blocks are C structures
- Extensible to arbitrary length with design evolution
- Utilized for both on-liftle & off-line analyses

LIGO-G960211-00-E

/home/lazz/Presentations/NSF_Reviews/NSF_96_10/NSFReview961022-p1-v4.fm5

LIGC

LIGO-VIRGO DATA FORMAT

- Testing & verification at LIGO using I/O libraries for tape uncovered problems with C function calls between platforms (DEC vs. SUN)
 - >> LIGO wants to adhere to established software-hardware interface standards (i.e., POSIX) to minimize cost of code transportability/maintainability/upgrade/compatibility
- LIGO is discussing concerns with VIRGO; depending on outcome, LIGO may adopt VIRGO paradigm but implement its own code.
- Issue to be resolved by Spring 1997.
- QA is the key to code extensibility, adaptability& maintainability.

Modeling Activities

Modeling activities

- Time domain interferometer model with length and alignment D.O.F.
 - >> Objective
 - Demonstration of lock acquisition
 - dynamic stability of coupled alignment and length controllers
 - transfer functions between Length and Alignment DOF
 - Pseudo-data for noise analysis
 - >> Parallel efforts by D. Redding/JPL and R. Beausoleil/Cygnus
 - different approaches
 - model cross-validation
 - different application speed vs. accuracy
 - >> D. Redding time difference equations; iterative solution
 - Length (single D.O.F.) part complete
 - Used for the design of LSC
 - >> R. Beausoleil forward time propagator kernel
 - single Fabry-Perot cavity with length and alignment DOF complete -- being validated

• FFT model

>> Detailed study of interferometer performance

e.g., sensitivity study of mirror phase/reflectivity error due to coating & polishing
Code is parallelized

running on PARAGON in CACR - 10 x faster than SS20
Interface improved:

- GUI interface for input data
- Remote scripting
- Database for maintaining the run summaries

End-to-End model

- Frequency domain (steady state model) version
 - >> Interferometer: *Twiddle* by M.Regeher/H. Yamamoto
 - >> Noise models: K. Blackburn (& R. Weiss et al.)

Transition to time domain

- >> Interferometer and noise in freq. domain are essentially done
- >> Control system for LIGO is still in design stage
- >> Time domain model will be developed and is more suited when modeling control system
 - Time domain IFO model with length and angular DOF JPL/Cygnus models
 - Time domain noise models need to be developed
- Time domain version just started
 - >> First target is 40 m testbed serve as a prototype for the full version
 - >> Inclusion of control system use design for 40m recycling
 - >> Include fundamental building blocks for LIGO

