Optics Development for LIGO

Stan Whitcomb

14 November 1996

.

Large Optical Components ("Core Optics")

 Test Masses End Mirror >>End Mirror >>Input Mirror • Beamsplitter Recycling Mirror Total Number: 20 Recycling **Input Mirror** End Mirror Mirror T ~ 3% >>WA 4km: 6 Optics T ~ 3% T ~ 10 ppm Laser >>WA 2km: 8 Optics Nd:Yaq 100 W 6 W 12 kW 20 m 4000 m >>LA 4km: 6 Optics + Spares Photodetector (dark fringe)

Core Optics

• High purity fused silica

>>25 cm diameter x 10 cm thick (except beamsplitter: 4cm thick)

>>Beams fill some optics (to ~1ppm level)

>>1064 nm HR mirrors and AR second surface coatings.

• Principal performance requirements:

>>< 50 ppm loss per surface (limits resonant stored energy: shot noise)

>>Surface figure errors to scatter negligible power from TEM_{oo} (best dark fringe)

- Similar requirement for bulk inhomogeneity

>>High mechanical Q to "suppress" thermal noise ($Q \ge \text{few x } 10^6$)

>>Low bulk (<~5ppm/cm) and coating (<2ppm) absorption (thermal lensing limit to beam power and dark fringe contrast).

Optics Development Program ("Pathfinder")

• Purchase and evaluate fused silica blanks (5/94)

>>Corning 7940 OAA Grade

- Best effort polishing of substrates (8/95-4/96)
 - Commonwealth Scientific and Industrial Research Organization (CSIRO)General Optics (GO)
 - >>Hughes-Danbury Optical Systems (HDOS)
- Independent substrate metrology (4/96-8/96)

>>National Institute of Standards and Technology (NIST)

• Coating uniformity development (7/95-ongoing)

>>Research Electro Optics (REO)

- Coated optic metrology (NIST, early '97)
- Analysis of all data in LIGO computer model

Defining the Optics Requirements

• Primary tool is computer model of full recycled interferometer

>>FFT-based optical propagation code

>>Includes the surface figure of all optical components (either real or simulated)

>>Includes OPD of substrates

>>Solves for carrier and sidebands for modulation/demodulation

• Contributions from many people

>>Original code courtesy of Jean-Yves Vinet and Patrice Hello (VIRGO)

- >>Extensive modification and enhancement by Partha Saha, Yaron Hefetz, and Brett Bochner
- >>Used to establish LIGO requirements by Bill Kells

Core Optics Requirements

• Tight matching of all optical parameters arm to arm

Physical Quantity	Test End	Mass Input	Beam splitter	Recycling mirror
Diameter of substrate, ϕ_s (cm)	25	25	25	25
Substrate Thickness, d _s (cm)	10	10	4	10
1 ppm intensity contour diameter (cm)	24	19.1	30.2 ^a	19.2
Lowest internal mode frequency (kHz)	6.79	6.79	3.58	6.79
Mass of Suspended Component (kg)	10.7	10.7	6.2	10.7
Nominal surface 1 radius of curvature (m) and g _i factor	7400 g ₂ =.46	14540 g ₁ =.725	∞	9890 g=.9984
Tolerance on radius of curvature (m)	absolute: +220 matching: <u>+</u> 111	-1000, +145	>-720 km convex, >200 km concave	-100, +500

a. For these 45° angle of incidence optics, this is the smallest diameter circle centered on the optic face which is everywhere outside of the 1 ppm intensity field.

Substrate Material Results

Optical homogeneity measured and evaluated using FFT model

>>OPD maps of best grade fused silica indicate sufficient homogeneity >>Bulk $\Delta n \le 5 \ 10^{-7}$ through 10cm.

- Mechanical Q's measured > $8 \ 10^6$ (lowest 5)
- High dn/dT coefficient for silica requires very low absorption. >>VIRGO measurements correlate 1064 nm absorption with OH concentration.
 - >>Typical process: 500-1000 ppm OH (10-20 ppm/cm absorption): Heraeus process ~200 ppm OH (~5 ppm/cm absorption).
 - >>Only critical for input mirror and splitter.
- Orders for ~40 blanks have been placed

>>Heraeus selected for input mirrors and splitters and Corning for all others>>Spares and allowance for in-process problems

Core Optics-Polishing Demonstration

- Best Effort Polishing/Metrology of Substrates
 - >>HDOS, CSIRO, GO

>>Flat on one side; R= 6000 m on other side

>>Goal: "mid scale" surface figure errors <.8 nm rms (central 8 cm diameter)

>>Goal: < 0.4 nm rms microroughness

• Independent Substrate Metrology

>>NIST (C. Evans, R. Parks, et al.)

>>PMI absolute metrology, multiply redundant measurement approach

>>Surface scales \geq 3mm using existing 633 nm equipment

• LIGO supervision, coordination, analysis

SariLynn Billingsley, Doug Jungwirth, Bill Kells, Cathy Kreath (consultant), Rick Savage, Rai Weiss

Core Optics-Polishing

 Conclusion: rms deviation from sphere < 1nm over 20cm diameter are achievable!

>>In some cases, apparent rms ~0.5 nm measured

• With care, measurements at < 1 nm level possible

>>Reproducible features seen; Consistent intercomparisons demonstrated

>>Small, subtle systematic effects noticed

-Flat reference vs. curved surface

-Fizeau path differences

-Focus effects

• GO and CSIRO selected to polish LIGO Core Optics

Pathfinder Polishing: Surface Figure

>>NIST Measurements

>>HDOS-polished optics comparable

Pathfinder Polishing: Microroughness

Comparative surface roughness measurements made at REO

	Optic/Surface	Microroughness (Å rms)		
Polisher		Micromap SW (5 location ave.)	PSD area analysis (R. Weiss)	
CSIRO	006/Curved	3.6	3.7	
	006/Flat	2.8	2.7	
	002/Curved	2.7	3	
	002/Flat	3.1	3	
GO	005/Curved	0.85	0.6 - 1.4	
	005/Flat	0.88	0.7 - 1.2	

>>HDOS results comparable to CSIRO

>>CSIRO (and HDOS) improving microroughness

Coating Uniformity Development

- Coating Uniformity Development: REO
 - Soal: Scale up low loss ion beam sputtered coating technology to LIGO diameters
 - >>Preliminary test pieces show good uniformity to 15 cm diameter
 - >>Final verification: Coat Pathfinder optics for 633 nm and test
- Development of new test technique
 - >> Measurements: Doug Jungwirth, Alex Golovitser
 - >> Analysis: Hiro Yamamoto, Bill Kells
 - >> Coatings: Research Electro Optics, Ramin Lalezari

Coating Uniformity Measurements

•Map reflectivity of specially designed AR coating

- >Insensitive to surface figure of underlying substrate
- Can investigate uniformity of individual coating layers
- •Make measurements at:
 - >>2 Polarizations
 - >>3 Angles

Coating Reflectivity Data

• Typical radial scan shows good reproducibility (~0.2%)

LIGO-G960224-00-D

Test AR Coating Design

LIGO-G960224-00-D

Individual Layer Maps

 Individual layer thicknesses determined by least squares minimization process

Sample Scans and Fits

- Fit Data to Zernike polynomials up to tenth order
- Deviations from fits consistent with measurement errors

Extrapolate to Full HR Coatings

 Use fits to individual layers to synthesize predicted phase map for HR coatings

Preliminary Coating Assessment

Have used FFT-model to assess performance in LIGO interferometer

Run Conditions	Surface Figure (Å rms)	Recycling Factor	h(100 Hz) (x10 ⁻²³ Hz ^{-1/2})
Standard Configuration: Measured Substrate OPD's Surface Phase Maps Based on Polished Substrates	0.8	52	1.39
Standard Configuration, except 40 Layer HR substituted on End Test Mass	3.8 (ETM)	17	2.14
Standard Configuration, except 16 Layer HR substituted on Input Test Mass	1.9 (ITM)	33	1.73
Standard Configuration, except 40 Layer HR substituted on End Test Mass and 16 Layer HR substituted on Input Test Mass	3.8 (ETM) 1.9 (ITM)	15	2.52

• Some loss in sensitivity but within a factor of 2 of required uniformity

Coating Uniformity: Next Steps

- Make coating adjustments to reduce curvature (REO)
- Two new test AR coating runs

 \rightarrow Separately test SiO₂ and Ta₂O₅

- Coat Pathfinder optics with HR coatings
- Measure reflected phase at NIST to confirm scaling from single layers to HR coatings

Summary

- Tools and techniques (both experimental and analytical) in place to evaluate LIGO optics against requirements
- Substrate material and polishing appear to be adequate for initial LIGO interferometers
- Preliminary coating uniformity data promising; further improvements and testing expected within the next few months

