IFO Acquisition Modeling Results (LS 12/12/96)

- Changes to baseline feedback configuration necessary for locking recycled ifo
- Design Issues

- >> Speed of acquisition (threshold velocities)
 - LIGO
 - **-** 40 m
- >> Robustness of servo design (optical gain changes as sequence through acquisition)
 - LIGO
 - **-** 40 m
- Conclusions

Allowed Locking Sequence For LIGO and 40 m

Why Won't Baseline Configuration Acquire Lock?

·.·

3

LIGO-G960245-00-D

Solution to Fundamental Locking Problem

CHANGES TO BASELINE:

- 1) swapped roles of I1+I2 and L1+L2 sensing points
- 2) polarity switches added to I1+I2 and I1-I2 loops that trigger as second arm acquires lock

Model Results Assuming No Switches in Servo Design

ŀ

ŝ

5 of 10

LIGO-G960245-00-D

Model Results with Switches in Servo Design

.

÷

LIGO-G960245-00-D

Threshold Velocity Predictions (indicates speed of acquisition)

	L1+L2	l1+l2	L1-L2	11-12
BANDWIDTH	10^4 hz	55 hz	170 hz	22 hz
THRESHOLD VELOCITY	4λ ₁ /sec	λ_1 /sec	$\lambda_1/12/sec$	λ_1 /sec

LIGO ACQUISITION MODE SERVO DESIGN WITH SIMILAR BANDWIDTHS TO DETECTION MODE DESIGN ($\lambda_1 = 1$ micron)

	L1+L2	l1+l2	L1-L2	11-12
BANDWIDTH			~ 1.5 khz	
THRESHOLD VELOCITY			~ $\lambda_2/10/\text{sec}$ (Guided Lock Exp. showed $\lambda_2/2.5/\text{sec}$)	

40m ACQUISITION MODE SERVO DESIGN ($\lambda_2 = .5$ micron)

40 m Fringes for 2 Different Test Mass Velocities

5

÷

Optical Gain Changes During Acquisition

	(L1+L2)	(11+12)	(L1-L2)	(11-12)
State 2> State 3	NA	no change	NA	no change
State 3> State 4	65 db	-10 db	NA	-9 db

LIGO Relative Optical Gain Changes During Acquisition

	(L1+L2)	(l1+l2)	(L1-L2)	(11-12)
State 2> State 3	NA	no change	NA	no change
State 3> State 4	35 db	-22 db	NA	-31 db

40m Relative Optical Gain Changes During Acquisition

What Have We Learned From Acquisition Modeling?

• LIGO

- >> Baseline feedback configuration <u>can not</u> lock a LIGO IFO
- >> Changes to baseline solve fundamental locking problem
- >> "Guided lock acquisition" stategy probably necessary
- >> Can probably acquire with no changes to servo gains
- 40 m
 - >> Planned feedback design <u>will not</u> lock 40 m
 - >> Hope to show that changes to baseline will solve fundamental locking problem
 - >> Time to lock will probably be somewhat worse than time to lock recombined configuration
 - Hope to show acquisition doesn't require real time changes to servo gains

