LIGO R&D After Recycling/Phase Noise Measurements

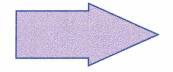
Gary Sanders
Science/Integration Meeting
December 12, 1996

Baseline IFO R&D During Construction

- 40 Meter baseline plan
 - » Recycling experiment completed for LSC final design (3Q97)
 - » Exercise data collection/analysis/study of non-gaussian noise/operational studies (1997)
- 5 Meter baseline plan
 - » Phase sensitivity measurement at 514 nm (1996)
 - » Phase sensitivity measurement at 1064 nm (1997)

- Construction budget support for these capabilities ends when these are completed
 - » both of these programs are completed by late 1997

Options for the Future


- Shut down one or the other or both instruments and focus resources and attention on larger instruments at the sites
 - » Main mission of gravitational wave research is seriously impacted by developmental use of large instruments
- Operations
 - » R&D to characterize and improve initial LIGO interferometers
 - » Test operational innovations
- Advanced Detector R&D
 - » Research to underpin enhancements to initial interferometers and entirely new interferometers

5 Meter/40 Meter Options Beyond Construction

- Caltech group will study future program for 40 Meter
 - » Robbie will carry out this study
 - » Though of intense local interest this will be a LIGO-wide study
- MIT group has already begun this study due to scheduled demolition of Building 20
 - » vacuum system move/renovation/modification is related to future program at MIT
- Both programs must develop to benefit LIGO overall but both are of intense local interest
 - » Doctoral students, postdocs, on campus vitality of program

Robbie

Goals - Construction

- Zucker "Lock up Hanford #1" separate talk
- Weiss Reduce risk
 - » recycling
 - y full scale stack test in vacuum with at least one cavity
 - » diagnostics (so you know what is going on)
- Sanders beyond lock at Hanford
 - » bring 40 Meter into full, reliable sensitive operation
 - » collect data, analyze data
 - » study non-gaussian noise
 - » set improved limit on gravitational waves
 - narrow band search with bar
 - solo pulsar search (Barish/Prince discussion)

Spero - Current Configuration

- » PSL
 - study/eliminate lock acquisition bounce
 - eliminate feed-around signal's disruption of lock
 - investigate alignment shift (slow PZT?) on lock reacquisition
 - full loop characterization, including calibration of sliders in terms of gain, measurement of subloop gains, and study of Pockels Cell/fast PZT crossover oscillation
 - assessment of 60 Hz multiples and of noise due to digital electronics
 - install switches to open individual/overall servo loops
 - install software-controllable electromechanical shutter at laser output, in front of photodiodes
 - software for automatic offset setting

Spero - Current Configuration

» PSL

- add features to control screen: record settings and voltages, restore settings, television monitor of mode cleaner transmitted mode, alignment knob box enhancements
- incorporate Sammi or equivalent enhancements to user display, such as better strip-chart plotting, power meter with appropriate full-scale setting
- implement Chen's algorithm for automatic alignment of mode cleaner
- software for automatic I/V curve tracer to monitor health of laser tube
- automatic shutdown/startup sequencing
- implement software-controlled ringdown

Spero - Current Configuration

- » Slow Monitor and Noise Correlations
 - Build circuitry to monitor the rms noise output of the interferometer, as a function of time
 - Build circuitry and software for real-time pulse height histograms
 - Design and use hardware/software system to correlate above to various slow monitor signals with objective to find subsystems that are responsible for noise or pulses
 - Identify significant sources of drift in interferometer performance
- » Other Improvements
 - implement Hess's algorithm for guided lock acquisition of optical levers
 - develop data collection and analysis software

Spero - Beyond Current Configuration

- » New beamsplitter with VME/EPICS control. Verify performance, integrate with existing alignment systems.
- » Installation of operator's console, including diagnostic systems, and shift routine operations to control room.
- » Change to 32 MHz modulation frequency, including new reference source and phase shifters. Requires new photodiode front ends and associated electronics.
- » Recycling mirror added, with alignment and position controlled by VME/EPICS. Lock acquisition may require hardware/software modifications.
- » VME/EPICS controls of test masses (and new suspensions for all but EV.)
- » YAG laser and 12 m mode cleaner.

Goals - Operations

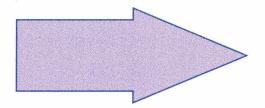
Camp

» Non-linear servo operation: acquisition and stability

>>

Goals - Advanced R&D

- Double Pendulum
- Active Seismic
- Advanced Passive/Active Seismic
- 100 watt 1064 nm laser
- Advanced Core Optics
- Sapphire Core Optics
- Resonant Sideband Extraction or Dual Recycling


Other Issues

- Construction baseline is known
- Operations must plan along with commissioning and evolution of organization to operations/functional
- Advanced R&D
 - » use LIGO PAC for review
 - » must decide which tasks conducted at CIT or MIT interferometers
- Consider all activities beyond construction to be based upon formal proposals to LIGO Directorate, reviewed by PAC
- Proposals from outside of LIGO may be competitive

To Do...

- LIGO management seeks individual input now
- MIT must study its local options
 - » relocation/renovation plan for MIT test interferometer needed
- Robbie will carry out local CIT study of options
- PAC will be asked for advice
- PAC will review advanced R&D proposals
- Seiji RSE/SR
- David Double Pendulum

