Science & Integration Meeting Agenda

Detector & R&D

÷

	>>NPRO stabilization results	Mason/Savage					
	>> Interferometer acquisition modeling results Sievers						
	>>FMI wavefront sensing results	Mavalvala/Sigg					
	>> PNI status & plans	Fritschel					
	>>40m recycling status	Logan/Spero					
	>> Core Optics Status: REO coating						
	performance analysis	Jungwirth					
ラ	<pre>>>FFT modeling (20 min)</pre>	Kells					
	>> DAQ prototype plan for 40m	Bork/Barker					

COC performance from FFT viewpoint

• Extensive FFT model runs since Spring '96

Paragon parallel computer (Bochner, Phung);32 nodes;~40 times Sparc 20 speed.

>>Over 8000 node hours, severI hundred runs (the bulk for consitancy, diagnostics so far).

>>Full splitter algorithm: 2 sided; 45^o beams; thickness and distortions.

>>Self consistant, bi-directional transmissive optics:

 L_r , $R_r = L_l$, R_l

Current program and goals

>>Support LIGO design and procurement specifics

>>Make code usage and result data base more accessable

>>Investigate properties of Recycling Cavity: degeneracy

>>

>>

Confirmation of COC Sizes

>>code results agree well with "gemetrical clipping"

As a follow up to these geometrical studies of loss, FFT code modeling was performed to study the effect of beam splitter clipping for various BS diameters. Figure A3 summarizes those studies. Curve 1. is for the case of $\phi_s = 28$ cm, $d_s = 5$ cm, with

Offset of Front Surface Beam on Beam Splitter (cm)

Calflat mirror surface maps and 50 ppm base loss per mirror surface. Curve 2 and 3 are for $\phi_s = 25$ cm, $d_s = 4$ cm. Curve 2 employs the same mirrors as Curve 1.

•

Develop "Benchmark Run"

• Summary of state of COC knowledge: Spring '96:

>>polished surfaces only: 50 ppm "base loss"; λ /600 CalFlats

>>Updated to DSR, 10/96, 4000 m ifo

CORNING bulk tranmission maps

Property	Requirement
Recycling cavity optical length (physical length shorter due to substrate index)	9.38 m (4km) 11.67 m (2km)
Mode cleaner optical length	12.55 m (4km) 14.75 m (2km)
Schnupp optical length asymmetry (4 km)	$l_1 - l_2 = 31$ cm nominal; -1 to +50 cm range
GW readout modulation frequency (4 km)	24.0 MHz
GW readout modulation depth (4 km) at recycling cavity input	Γ =0.45 nominal; range TBD 0 < Γ < 1.0

Property	Requirement	Reference
Optic Sizes	TM, RM: 25 cm dia., 10 cm thick	
	BS: 25 cm dia., 4 cm thick	
Coated surface	24 cm dia.	
Beam Sizes	ITM: 3.6343 cm w ₀	
	ETM: 4.5655 w ₀	
	BS: 3.6359 w ₀	
	RM: 3.6377 w ₀	

Property	Requirement	Reference
Radii of Curvature	ITM: 14571 m; -0.07< ΔR _{ITM} /R ₀ <0.01	
(tolerances to maintain strain sensitivity to 0.95 nominal)	ETM: 7400.0 m; ΔR/R ₀ of 0.03	
	BS: flat/flat, tolerance TBD	
	DM. 0008.22m; 0.01 < AD < 0.05	
Surface figure	equivalent to '1.5 × Calflat'	
Mirror transmissions	ITM: 0.030±0.00015	
Radii of Curvature (tolerances to maintain strain sensitivity to 0.9: nominal) Surface figure Mirror transmissions AR Coatings: Mirror losses: Substrate index Substrate OPD for BS, ITM, RM Substrate absorption	ETM: 10 <t<20 ppm<="" td=""><td></td></t<20>	
	BS: 0.50±0.01 TBD	
(tolerances to maintain strain sensitivity to 0.95 nominal)ETM: 7400.0 m; Δ BS: flat/flat, tolera DM: 0009 22m; Δ Surface figureSurface figureequivalent to '1.5 millionMirror transmissionsITM: 0.030±0.000 ETM: 10 <t<20 pr<br=""></t<20> BS: 0.50±0.01 TE 	RM: Overcoupled, 0.1 E field reflected	
AR Coatings:	ITM, RM: 600±300 ppm	
	BS, ETM: 200±100 ppm	
Mirror losses:	50 ppm scatter+absorption	
Substrate index	1.44963 (Heraeus)	
Substrate OPD for BS, ITM, RM	5×10^{-7} p-v, $\lambda = 632.8$ nm, cntr 150 mm	
. ,	2.5×10^{-6} p-v, $\lambda = 632.8$ nm, cntr 225 mm	
Substrate absorption	<2 ppm/cm	
Substrate scatter	<5 ppm/cm	

FFT model computation result:

. .

P _{arm}	P _{DP,Cr}	G ₀₀	L _{A,OPT}	P _{DP, SB}	P _{RFL}	h _{100 Hz}	R _{RM}
18250	.0794	51.1	15.1 cm	.499	.0541	1.38 10 ⁻²³	.97635

Tolerances

- Apodization of mirror map reflectivity (centered beams).
- Absolute and differential tolerances for mirror curvatures:

>>Criterion: worst combination of errors gives $\delta h/h_{100} < 5\%$

>>Summary: -.07< Δ R/R_{ITM}< +.01 -.01 < Δ R/R_{RM} <+.05 -.015< Δ R/R_{ETM}< +.015

R.C. DISTORTION APPROXIMATION

- RC. DISTORTIONS HARDLY EFFECT CARRIER
- . THIN , SMALL PERTURBATION APPROX
- NOK FOR ITM BULK, I'VS VAR MAPS : BUT FOR BS. ?

EPROMPT : DOUBLE PASS ELEAR = (-) phase AND ~ 2x Amplitude -> ctroel NOT SO FOR SB's 8 of 13 LIGO-G960000-00-M

i c

Design Guidance Cases

>>effect of coating uniformity: stack layering

>>effect of thermal lens (ITM so far)

		CARRIER			SIDE BANDS		
Feature	G	P _{RFL}	P _{DP}	Γ	P _{RFL}	P _A	x 10 ²³
Benchmark	51.1	.0098	.015	.46	.16	.79	1.38
Splitter: .51 / .49	51.8	.0054	.02	.49	.20	.73	1.46
Arm Loss up 30 %	40.7	.0004	.012	.42	.16	.79	1.77
Arm Loss imbal of 60% $\Delta T/T_{17}m^{-207}$	<u> 51</u> .1 50-7	.0099 ••• •	.015 • 015	.47 • 46	.16 •16	.79 • 77	1.38 1.57 4.70
ITM Bulk Absorp. Thermal lens	50.8	.0093	.014	.54	.61	.37	1.69
coated (ITM)	55.0		.014	.45	.18	.76	1.33
coated CalFlat (ITM)	49.8		.024	.49	.23	.72	1.48
coated CalFlat (ITM) coated (ETM)	28.8		.029	.51	.14	.82	1.91
coated CalFlat (Both)	27		.032	.53	.131	.84	1.97

FFT model results normalized to one Watt input power

٢

LIGO-G960000-00-M