# GALILEO

# Advanced Interferometric Gravitational Wave Receivers and their Subsystems

Stanford University

LIGO-6970015-00-R

## GALILEO Faculty

| <i>Director</i><br>Robert Byer                                     | - Applied Physics                                              |
|--------------------------------------------------------------------|----------------------------------------------------------------|
| <i>Associate Director</i><br>Peter Michelson                       | – Physics                                                      |
| Daniel DeBra                                                       | <ul> <li>Aeronautics and Astronautics</li> </ul>               |
| Martin Fejer                                                       | - Applied Physics                                              |
| Jonathan How                                                       | <ul> <li>Aeronautics and Astronautics</li> </ul>               |
| <i>Associated Faculty</i><br>James Harris – Electrical Engineering |                                                                |
| Yoshi Yamamoto                                                     | <ul> <li>Electrical Engineering and Applied Physics</li> </ul> |
| Richard Taylor                                                     | – Physics                                                      |

- 12/89 NSF Support for Byer Group Laser Development Begins
- 12/95 GALILEO Proposal Submitted to NSF
- 5/96 Site Review of GALILEO, NSF Special Emphasis Panel
- 6/96 Revised GALILEO Proposal to NSF Submitted
- 6/96 LIGO White Paper on Advanced Detectors
- 6/96 McDaniel Committee on the Long Range Use of LIGO recommended "open collaboration with broad community participation"
- 8/96 Funding for Revised GALILEO Program Begins
- 10/96 "Proposal for a Research and Development Program for Advanced LIGO Detectors by the LIGO MIT/Caltech Groups" Submitted
- 10/96 "A Supplemental Proposal for the GALILEO Program for a Collaboration with LIGO On Advanced Interferometer Development" Submitted

## GALILEO Research Areas

Table Top Interferometers

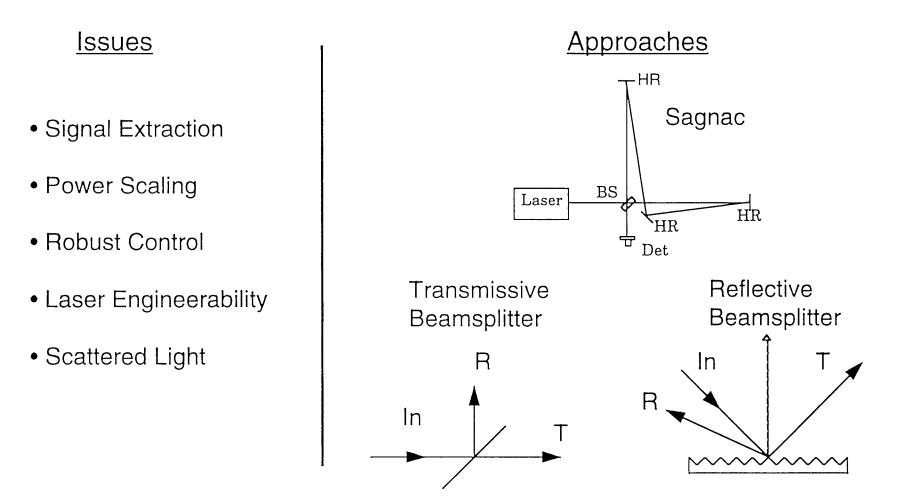
Martin Fejer

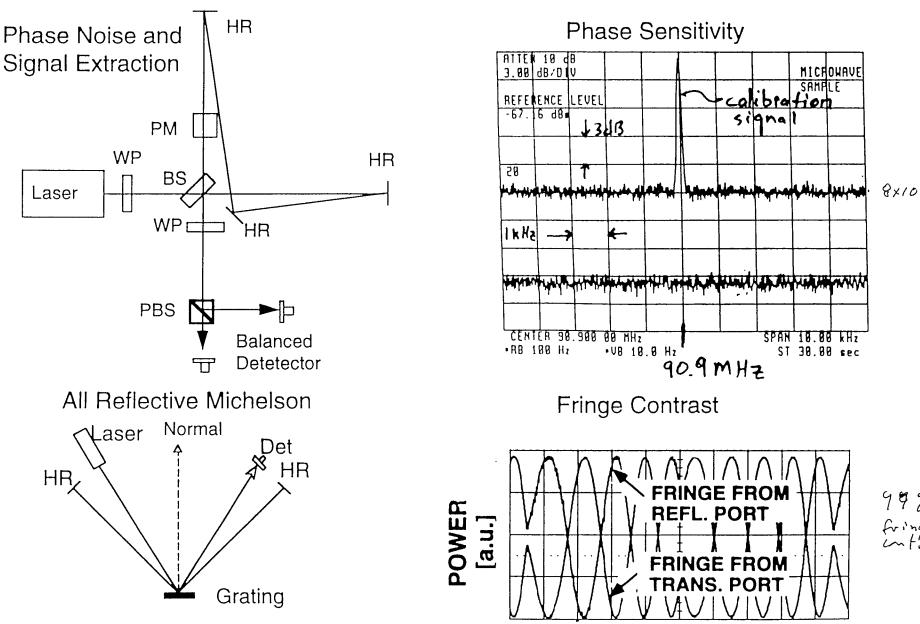
• Optics

• Interferometry

Robert Byer

- Lasers
- Optics


| Laser                                                     | Suspensions, Thermal                                        |
|-----------------------------------------------------------|-------------------------------------------------------------|
| Development                                               | Noise and Control                                           |
| Robert Byer<br>• Lasers<br>• Optics<br>• Nonlinear Optics | Peter Michelson<br>• Vibration Isolation<br>• Thermal Noise |
| Jonathan How                                              | Daniel DeBra                                                |
| • Adaptive Optics                                         | • Controls                                                  |
| • MIMO Control                                            | • Vibration Isolation                                       |
| Martin Fejer                                              | Jonathan How                                                |
| • Materials                                               | • Vibration Isolation                                       |
| • Optics                                                  | • MIMO Control                                              |
| <ul> <li>Nonlinear Optics</li> </ul>                      | Martin Fejer<br>• Materials                                 |


| Funded Program                                                          | Proposed in Supplement                                            |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                         |                                                                   |
| Laser Noise Reduction (GEO)                                             | Laser Amplifier Power Scaling (LIGO)                              |
| Table Top Intereferometers<br>and Control                               | Thermal Effects in Table Top<br>Interferometers                   |
| Active Strut Development with<br>Feed-Forward                           | Advanced Active Isolation System<br>and MIMO Control (JILA, LIGO) |
| Advanced Materials for<br>Testmasses and Suspensions<br>(Syracuse, GEO) | Double Pendulum and Control<br>(LIGO, GEO)                        |

### Advanced Interferometry

#### <u>Goals</u>

Sensitivity High Interferometer Availability

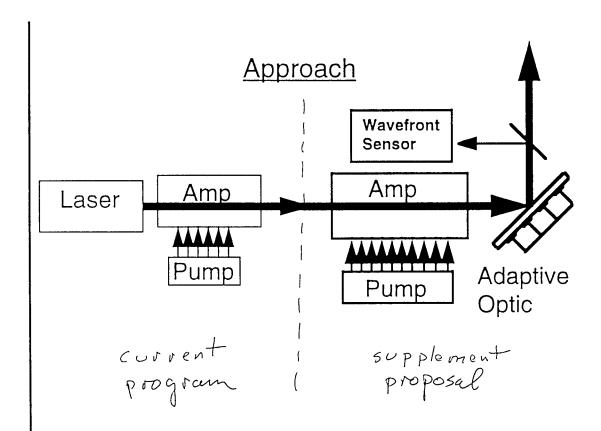


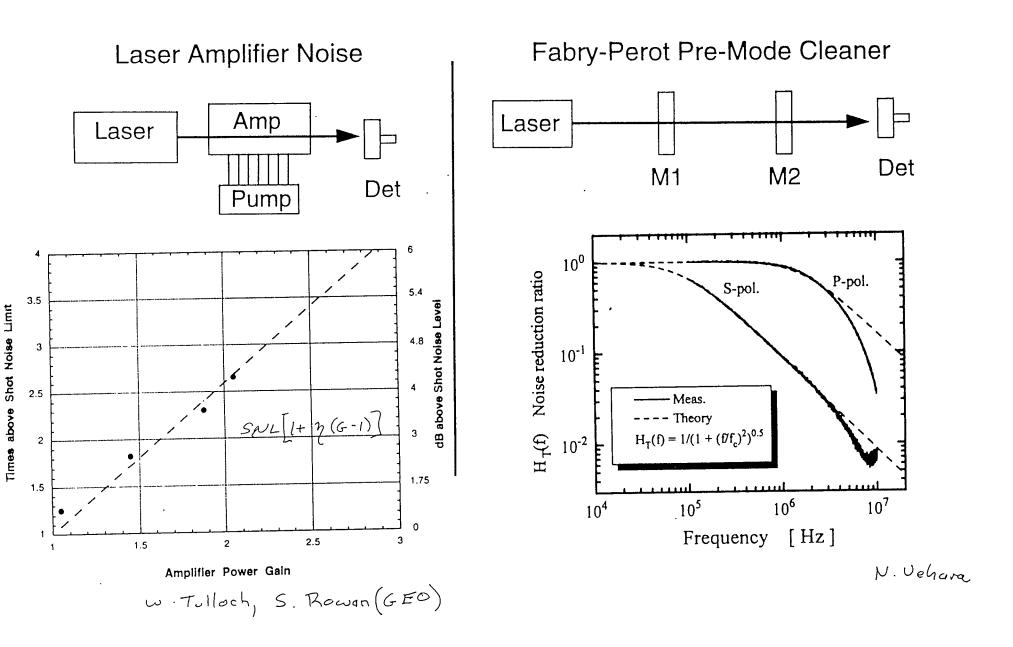


99% fringe infogst

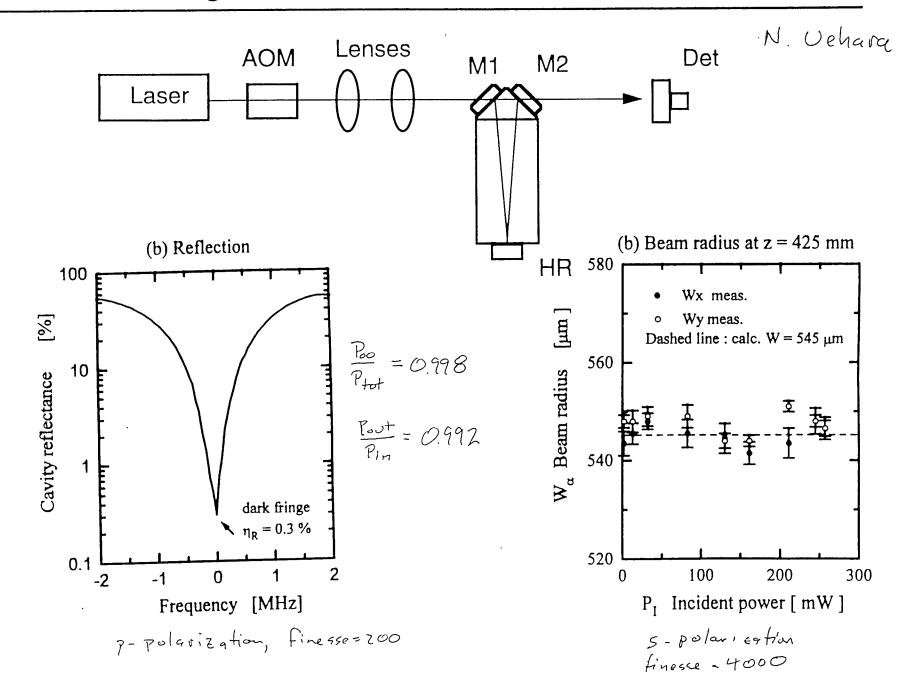
VAD

Ke-Xun Sun


### Laser Development and Laser Noise Reduction


<u>Issues</u>

- Power 10W $\rightarrow$ 100W
- Laser Noise
- Spatial Mode Quality


Supplemental Program

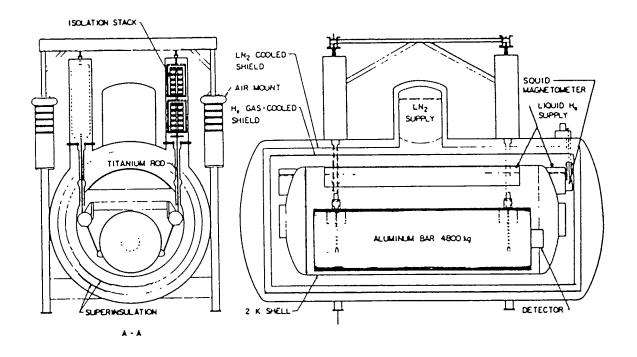
- 100 Watt Saturated Amplifier
- Adaptive Optic
- Temporal and Spatial Noise
- System Integration and Phase Noise Demo (LIGO)





### Progress on Laser Pre Mode Cleaner




1

| Funded Program                                                          | Proposed in Supplement                                            |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|
| Laser Noise Reduction (GEO)                                             | Laser Amplifier Power Scaling (LIGO)                              |
| Table Top Intereferometers<br>and Control                               | Thermal Effects in Table Top<br>Interferometers                   |
| Active Strut Development with<br>Feed-Forward                           | Advanced Active Isolation System<br>and MIMO Control (JILA, LIGO) |
| Advanced Materials for<br>Testmasses and Suspensions<br>(Syracuse, GEO) | Double Pendulum and Control<br>(LIGO, GEO)                        |

### Suspensions, Thermal Noise, and Interferometer Control

Peter Michelson, Daniel DeBra, Martin Fejer, and Jonathan How

• Extensive experience with Gravity Wave Experiments



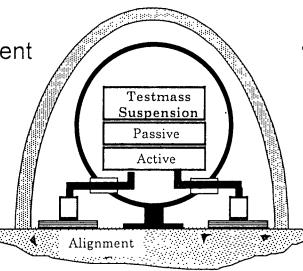
- Control and mechanical design for Gravity Probe B
- Isolation and control for space based stellar interferometers

### Suspensions, Thermal Noise and Control (Current)



\*

• Vacuum compatible active isolation

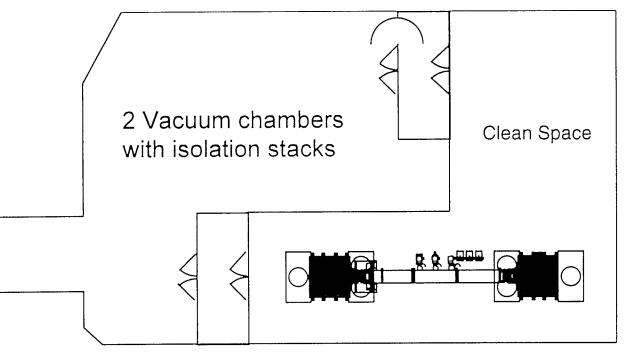

- Low strain designs
- Struts and shells
- Active strut

#### **Double Pendulum and Active Isolation (Supplemental)**

- <u>Goals:</u> Improved **low** frequency isolation
  - Improved interferometer availability
  - Reduced thermal noise

#### Further Issues

- Isolation and alignment control architectures
- Robust control
- Dynamic range
- Sensor noise
- Low loss suspension




#### **Approaches**

- Integrated engineering (w/JILA)
  - active/passive tradeoff analysis
  - MIMO control
  - integrated alignment and isolation
  - automated system ID
- Feedforward control (w/JILA)
- Double pendulum (w/LIGO, GEO)
   non-collocated control

### **Engineering Test Facility**

- End Station II of High Energy Physics Lab at Stanford
  - 4000 sq foot high bay space
  - 2500 sq foot "clean space"
  - two 15 ton cranes



- ETF is a crucial element of a strong collaborative effort
  - dedicated to engineering analysis of the isolation/alignment control

### Engineering Test Facility

- Facility for testing multiple full size active control systems
  - Fabry-Perot interferometer mirrors on independent isolators
  - relatively poor displacement and phase sensitivity compared to 40m (reduced cost)
  - clean vacuum system
- Designed to facilitate rapid prototyping
  - easy access and turn around
  - available to LRC
- Versatile and functional
  - verify tools to enhance interferometer availability (ID & robustness)
  - maintain lock while correcting for large scale disturbances
  - dynamic range compensation for fine actuators

## Summary of Proposal Supplement

- GALILEO is a **multidisciplinary** effort among Stanford Faculty
- GALILEO is **collaborative** with LIGO, GEO, JILA and Syracuse
- High-power Laser amplifier development (LIGO)
  - build and test a high gain saturated amplifier
  - incorporate an active mirror into the amplifier
  - amplify the 10W LIGO Laser
  - measure frequency, amplitude and modal noise
  - collaborate with LIGO on a phase noise measurement at 3x10<sup>-11</sup> rad/sqrt(Hz) if required

# Summary of Proposal Supplement

- Double pendulum
  - assess LIGO disturbance environment to determine design requirements (w/LIGO)
  - analysis of GEO600 double pendulum (w/GEO)
  - tabletop double pendulum experiments to study stability and control
    - » incremental prototyping (w/LIGO, GEO)
- Vibration isolation and control
  - investigate redesign options for the passive/active vibration isolation systems (w/JILA, LIGO)
  - design and implement an integrated control strategy in the Engineering Test Facility (w/JILA, LIGO)
  - vacuum compatibility studies of active vibration isolation (w/LIGO)
  - analyze candidate control configurations in the ETF
    - » select those for high sensitivity tests