LIGO Overview

Aspen '97

D. Shoemaker

27 January 97

G970021-00-D

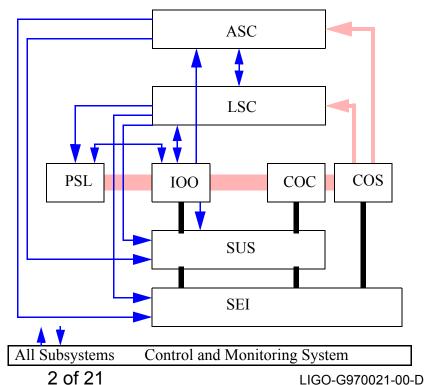
Organization of presentation

- Detector research and design
- Facilities status
- Schedule

LIGO Interferometer Design

Mechanical interfaces

Philosophy of initial design


- conservative: designs tested, many in sensitive interferometers
- · minimum of extrapolation required
 - displacement, phase sensitivity demonstrated
- some systems revised from first design
 - Argon laser, Viton springs

Role of R&D in process

- modeling helps target important/difficult design questions
- small-scale experiments test models in some regimes
- in general, test in sensitive interferometer follows
- actual LIGO design then possible

Subsystems breakdown

- Length Control
- Alignment Control
- Pre-Stabilized Laser
- Input Optics
- Core Optics Components, Support
- Suspension
- Seismic Isolation
- Physics Environment Monitor
- Control and Data System

Optical interfaces

Electrical interfaces

Length Sensing/Control

Phase modulation key to obtaining signals

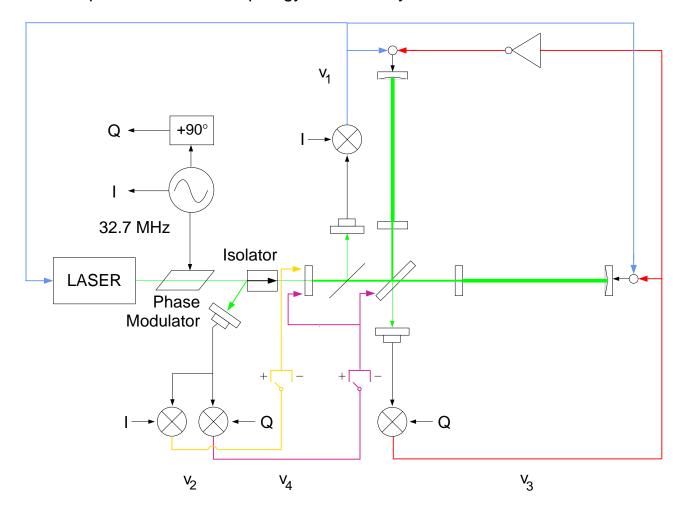
- Pound-Drever-Hall reflection locking techniques
- Asymmetry in Michelson to give differential signals

Designs tightly coupled to work on 40m, Phase Noise Ifo.

- acquisition and operation are both challenges
- modeling crucial, due to scaling required from lab to LIGO
- recycling experiment on 40m will give system test

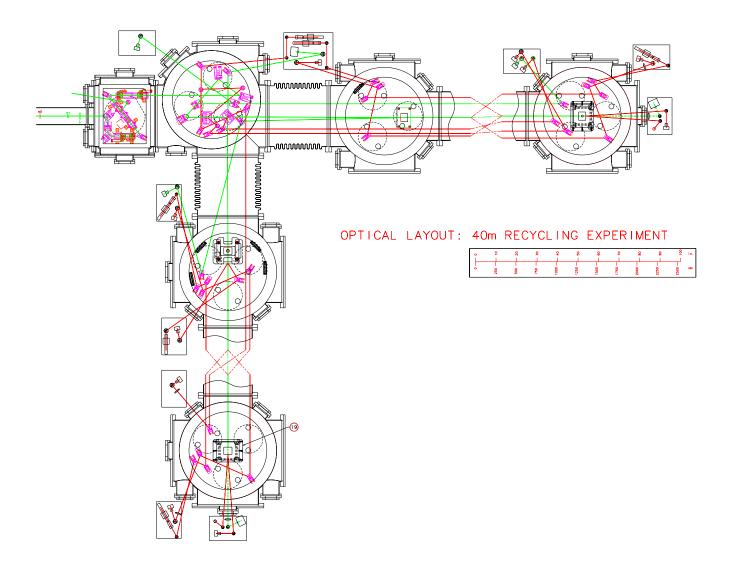
Largely digital servoloop to be used

transmission of signals over 4km eased (dynamic range!)


Reconfiguration of 40m as recycled Fabry-Perot Michelson

- significant activity in '97
- gives data directly to interferometer length control design
- allows tests of models in dynamic regime

40 m Recycling


Theory:

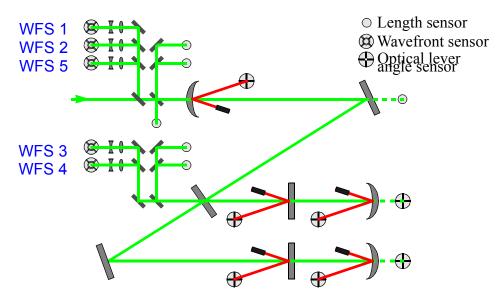
Optical and Servo Topology for the Recycled 40-m Interferometer

40 m Recycling

Practice:

Alignment Sensing/Control

Alignment of cavities to laser beam


- effective use of laser power
- avoid spurious effects from undesired modes
- performance requirement of $\sim 10^{-8}$ rad
- elegant model using expansion in modes of cavities

Sensing analogous to length sensing

- add spatial resolution to photodetectors
- look in near field/far field to separate translations, angles

Experimental test on table-top

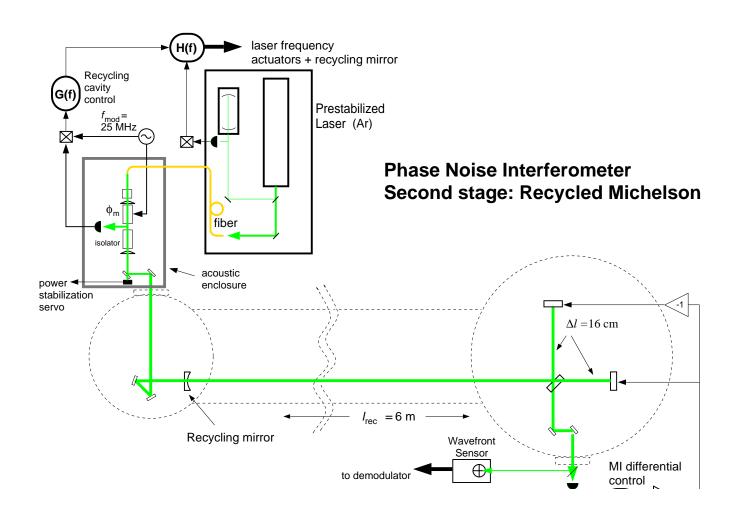
model verified

Alignment Sensing/Control

Model and prototypes tested on table-top system

- beautiful confirmation of Modal Model
 - > predictions for placement of sensors, telescopes
 - predictions for signal decomposition at ports
- digital acquisition/control demonstrated
 - > each quadrant digitized
 - > all 'matrix operations' in software
 - > all dithering of elements, read-in of monitors, data
 - servoloop transfer function
- wavefront sensor head, demodulation system shaken down
 - > basically ready for production

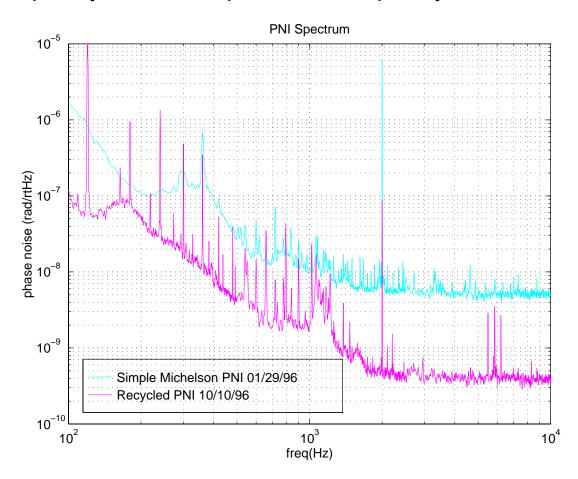
Many aspects to complete design


- · initial alignment
 - > get the beam down the tube (10^{-4} rad)
 - > get close enough for length control (10^{-7} rad)
- ; pre-operational; operational alignment
- centering: <1mm to limit noise coupling

R&D: Phase Noise Research

Goal: to demonstrate required initial LIGO phase sensitivity

- test models for shot-noise, sensing system
- develop photodetector technology
- uncover laser, servo, scattered light problems/solutions


Simplified optical system to minimize position sensitivity

R&D: Phase noise research

Comparison of recycled, unrecycled cases

- high-frequency noise, 4×10^{-10} rad/ $\sqrt{\text{Hz}}$, shot noise limited
- low-frequency noise from parasitics, frequency noise....

Next phase: conversion to Nd:YAG/1064 nm

- experiment will run to ~Jan 98
- tests low-power IR laser in characterized testbed

Pre-stabilized laser

Laser Source

- being developed and produced by Lightwave, Inc.
- monolithic Nd:YAG oscillator, followed by amplifier; 10 W output
- first units to be delivered in Oct 97

Stabilization

- based on rich experience with Argon Ion lasers
- modifications for Nd:YAG; e.g., filter cavity (Stanford)
- development underway using available 700 mW laser
- initial prototype for test in Phase Noise Ifo., in coming months

Input Optics

Under development in collaboration with Univ. Florida

• helped by clean interfaces, frequent visits, good communication

Principal components

- phase modulation system (multiple sidebands required)
- 3-mirror Fabry-Perot suspended mode cleaner
- matching telescope to main optics; reflective

Core Optics

'Pathfinder' process

- exploring/developing polishing, metrology, coating technologies
- significant progress on all fronts

Substrates: fused quartz, 25cm x 10 cm

- Heraeus low-OH material where absorption critical
- Corning for other applications

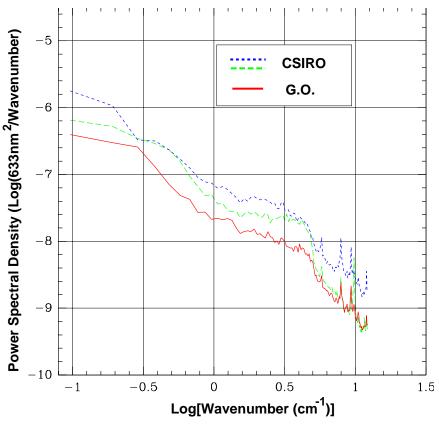
Polishing

- Three firms qualified for LIGO polishing
- 1 nm surface figure over 10cm required, and possible!

Coating

- REO and LIGO cooperating in measurement, characterization
- use AR coating reflectivity designs to study uniformity

Metrology


- NIST is the independent contractor for Pathfinder
- comparisons with vendor metrology; probably the limiting technology

Core Optics Support

• baffling, in-vacuum relay mirrors, etc.

Polished Surfaces

<1 nm over a 20cm diameter!

One dimensional power spectra from NIST metrology of curved surfaces. Z(0,0),Z(1,1) Z(2,0),Z(2,2),Z(3,1),Z(3,3),Z(4,0) removed

Coating

Use properties of AR coating to advantage


- reflectivity very strong function of thickness near zero reflection
- tune layer thickness to study uniformity, scan samples

Synthesize complete coating from these measurements

- fit to complete the surface
- make fictive 40-layer coating
- give feedback to REO on nature of problems

Rapidly approaching design flatness

40 layer HR coating phase map

Suspensions

Two basic flavors:

- Small Optic Suspensions: Input Optics components
- Large Optic Suspensions: Core Optics

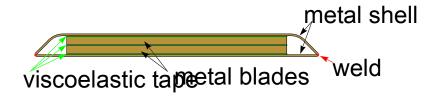
Prototypes in construction/test

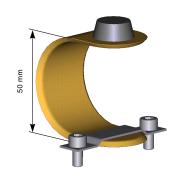
- challenges in fiber attachment (Q), initial balancing
- also in control electronics: severe dynamic range requirements
- tests in 40m interferometer for control, noise performance

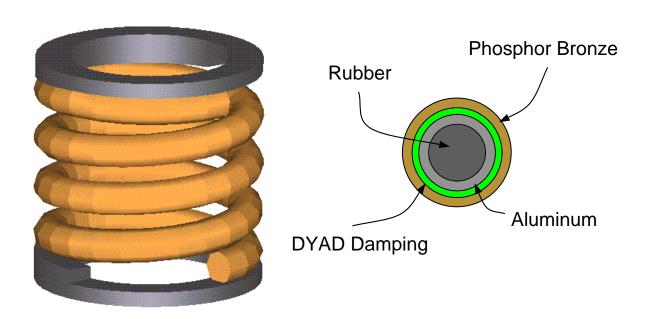
Seismic Isolation

Design contracted to Hytec, Inc.

- requirements developed by LIGO
- design makes incremental changes in initial design
- principal change in springs: Constrained Layer Damping


Requirements in control, GW band


- resonances create servo-control challenges, but...
- attenuation in signal band crucial


Preliminary design well advanced

• actuators for drift, tidal, microseismic peak also in development

Coil and Leaf Spring concepts

Control and Data System

Backbone of the interferometer

- electronics standards and design
- communications between subsystems
- all centralized control, monitor, operator consoles
- timing
- software up to the data analysis

Data Acquisition

- order of 5 MB/sec per interferometer total data rate
- data assembled into frames, short and long term storage

On-line Diagnostics

interferometer console to allow quick-look, scripts

Prototyping and design well advanced

- much R&D now using CDS electronics
- several subsystems tests (laser)
- data acquisition/frame builder in test

Physics Environment Monitor

All probable paths from environment to interferometer

- seismic (low 'drift' frequencies to GW band)
- acoustic
- electromagnetic: lightening, RFI, magnetic fields
- temperature humidity, wind, rain, etc.

Characterization of transfer functions

stimulus-response

System separate from interferometer

- to be used for veto, correlation, regressions
- principally commercial instruments

Early to the sites

- portable carts to enable measurements as buildings go up
- measure changes in the environment
- early data on correlations between sites

R&D Plans for '97

R&D for initial interferometer: ends in '97

- all designs finished, fabrication underway
- 40m recycling
 - > length control acquisition
 - > length control operational mode
 - tests of CDS electronics, data acquisition, etc.
- Phase noise measurements
 - > characterization of Nd:YAG laser
 - y guidance to Pre-Stabilized Laser design
 - > experience with infra-red optics, components
- Suspension tests in 40m
 - control and mechanical stability
 - internally-generated noise mechanisms
 - > installation practice
- Thermal noise research
 - measurements of Q for suspended test mass optics
- · Temporal, spatial modeling
 - to support design activities; integration of models

Beam Tube

Beam Tube slabs in place

a short interstate, laid in a week

Tubes in full production

- all activity is at Hanford for now; Livingston in Spring '98
- an enormous steel mill/factory churning away
- some 190 tube sections formed, 52 installed; no leaks!

Baffles baffling

- designed to limit scattered light
- coated with powdered glass and 'fired' to reduce backscatter
- some spalling; tiny glass missiles launched through beam
- solutions under study

Covers covering (cowering?)

over 2200 manufactured, awaiting installation

Installation and bakeout finished by end-98; LA end-99

Civil Construction

Hanford

- slab just poured and cured for LVEA (large vertex building)
- structural steel frame going up
- other buildings nearing completion

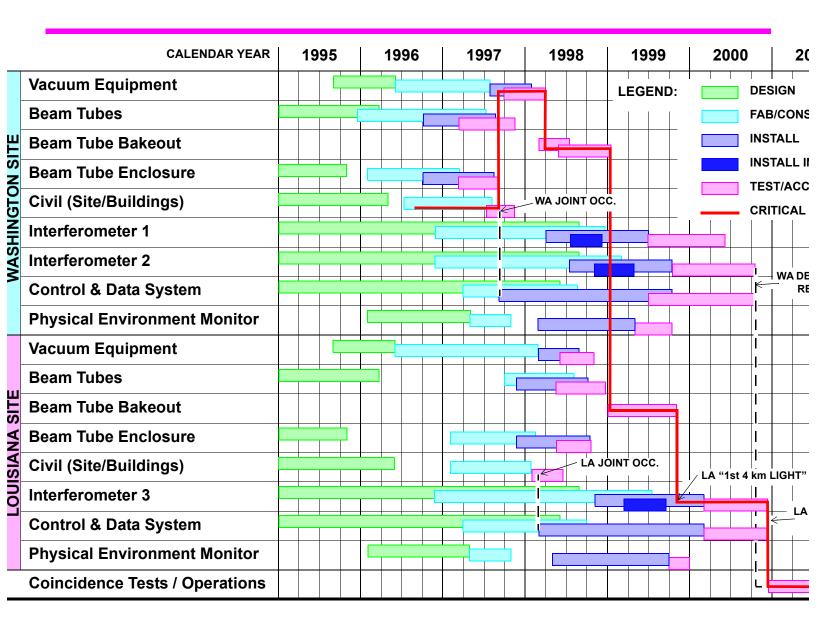
Livingston

heavy equipment now arriving

Schedule

- Hanford occupancy fall '97
- Livingston occupancy spring '98

Vacuum Equipment


Main chambers (BSC)

- 5 chambers largely finished (~1/2 WA complement)
- other 10 in various states of construction

Input/Output chambers (HAM)

- 8 chambers look like chambers
- material for the other 11 on hand

Other elements (spool pieces, valves, pumps) keeping up

