TRB Meeting 18 March 1997 Baffle Shedding Investigations

Agenda

- >> Investigation of glass shedding
 - Temperature cycle stimulation
 - Repair investigations
- >>Oxidized shiny steel (backup) development
- >>Projected performance
- >> Status as of today
- >> Present schedule assessment

Particle Shedding from Baffles

Location	Туре	Glaze	T ₁ +T ₂ 1 in	Time days	Size μ m	Number	LIGO Rate count/hr	
		Cone	Teeth					
#18 (MIT shake)	Serrated	18	31	3	> 100	500	160	
#19 (MIT shake)	Serrated	14	17	2	> 100	18	9	
CIT mockup #1	Serrated	17	27	16	> 100	360	22	
WA BT #1	Serrated			21	> 500	500	70	
WA BT #2	Serrated			21	> 500	60	9	
WA BT #3	Serrated			16	> 500	40	7	
WA BT #4	Serrated			16	> 500	20	4	
WA BT #5	Non-serrated	<u> </u>		20	> 500	2-5	.26	
CIT mockup #2	Non-serrated	4	-8	4	> 100	21	5	
					Maximum	allowable:	1	

Thermal Cycling of Baffles

- >> Used NTS facilities in Saugus, CA
- >> Ran 2 tests, 12 cycles/test, 2 hr/cycle @ {-30C +50C} -- planning one more when additional baffles are available
- >>Investigated only effect of exposed serrations (taped all hinges; planned to need to clean all hinges)
- >>Investigated shedding from side of cone facing near mirror (0.5X scaling to full baffle)
- >> Established baseline comparison between ambient environment (CIT) and cycling environment: tested one baffle for 5 days in mock-up and 1 day in NTS
 - Used ratio of amounts of material shed to scale cycling environment
 - >> Established background levels at NTS (needs improvement)

>>Tested:

- 2 ea. serrated baffles bad shedders
- 2 ea. nonserrated baffles first look
- 4 ea. newly made thin-glaze baffles (.002" .004" thickness)
 - 2 ea. with hinge uncoated;
- 2 ea. with hinge taped over
- 2 ea. O₂ flame-treated baffles (dubious test)
- 5 ea. nonserrated baffles (obtain better statistics)
- repeated a test of worst serrated baffle to see effect of repeated thermal cycling (24 vs. 12 cycles)
- >> Setup: see sketch

Test 1

NTS Test setup -Section view

NTS Testing Results

- Cycling discriminates between heavily and weakly shedding baffles
- Repeated cycling reduces shedding (1 example)
- NONE of the baffles tested passed originally agreed upon limits
 - The smaller the scale one inspects on, the more particles that are found used OTF microscope to scan 0.2 cm² patch where nothing was seen @ 2x magnification detected particles smaller than 5 microns particle count continues to grow at smaller scales.
- NONE of baffles presently in BT are judged acceptable they should be removed
- Thin glazed baffles perform much better comparable to type NS
- Background test gave positive results
 - >>energetic shedding by nearby baffles (?)
 - >> control baffle itself shed (?) -- 100% surface cover w/ tacky mat
 - >>if we are going to pursue glazed baffles further, need to improve setup.

Parallel Investigations - Fixes and Rework Considered & Explored

Centerless grinding to thin coating

- >> Met with Intercity Centerless Grinding specializes in tubular (to 4") steel and glass materials
- >>Our geometry (cone) and nature of material (sheet metal) make too expensive to pursue
 - Need to invent a machine/jig
 - Need high precision grinding (i.e., remove a few .001" of material from both sides) of a deformed conical sheet.

HF acid etch to thin coating

- >> Sibley approached 7 different users of HF to etch/clean parts aerospace & glass industries
 - >>0/7 responses of interest:
 - Not economically interesting
 - Environmental impact -- permit requirements

O₂ (bushy) flame treatment

- >> Working with Glass Instruments, Inc in Pasadena
- >> Treated 2 baffles -- poor quality/wrong side
- >> Still, showed some promise
- >> Awaiting for GII to fabricate jig and to properly treat 5 additional baffles (type S)
- >>Bottleneck in schedule cannot impart sense of urgency to proprietor ("intellectually interesting problem")

Parallel Investigations - Fixes and Rework Considered & Explored

Grit blast to thin

- >>mechanically rough on product
- >> controls expensive
- >>need to retreat surface with refiring to restore finish/anneal/fuse grit in steel
 - >>not pursued

Recapture existing baffle inventory

- >> Need to remove glaze by grit blasting
- >>Standard method is too rough product loss due to bending, deformation
 - >> Need to "precision" grit blast
 - >> Surface is very rough backscatter worse than BT wall
 - >> Need to either polish (?) ... or ...
 - >> Re-coat -- with what ?
 - >>not pursued

New baffles with thinner coating (?)

- >> Process control/uniformity is difficult
- >>Thinner coating baffles still shed

Projected Performance of Reworked Products

- R. Weiss took our shedding particle count data, normalized to account for NTS environment, and projected counts in LIGO BT per previous presentation at TRB of 16 January 1997
- Reanalysis of phase noise estimate for oxidized 304SS baffles
 - >>Used measured BRDF, reflectivity of baffle coupons
 - >> Used BT wall motion measured at Hanford
 - >> Used Pathfinder surface roughness data
 - GO optic (best surface
 - still uncoated

Table 2: Environmental Chamber Measurements: temperature 44C to -16C

Description	exposure	glaze thickness 2*t	number of particles on paper	number of particles on mat	rate in LIGO beam				
		mils			number/hr				
#52 s	5 days	18(32)	800 *		160				
#52 s	12 cycles	18(32)		202 *	160				
#52 s	2nd 12 cycl	18(32)	362	32 *	25				
#54 s	12 cycles	21(29)		150 *	118				
#57 ns	12 cycles	17		53 *	42				
#57 ns	2nd 12 cycl	17	205	42 *	33				
#58 ns	12 cycles	10	42 *	70	3				
#58 ns	2nd 12 cycl	10	29 *	15	2				
#64 s	12 cycles	4 (4)	64 *	20	5				
#73 s	12 cycles	?	80 *	15	6				
#73 s	2nd 12 cycl	?	12 *	40	0.8				
#65 s	12 cycles	6 (6)	118 *	17	8				
#76 s	12 cycles	7 (7)	119 *	93	8				
#75 ns	12 cycles	12	195 *	28	13				
#61 ns	12 cycles	10	41 *	78	3				
#82 ns	12 cycles	12	28 *	40	2				
#83 s ox	12 cycles	19(25)	246 *	74	19				
#69 s ox	12 cycles	20(28)	392 *	112	30				

Blegnd

The extrapolation to LIGO rates is based on baffle #52 which was measured both in the environmental chamber and for 5 days at room temperature. The extrapolation is done the same way as in **Table 1** assuming a linear distribution.

^{*} indicates the basis for the extrapolation to LIGO rates particle size is assumed larger than 100 microns mat measurements are the average for two mats

Baffle backscatter BRDF = $1 \times 10^{-3} \text{ sr}^{-1}$ Glaze baffles

Mirror scattering BRDF =
$$\frac{1 \times 10^{-6}}{\theta^2}$$
 Initial mirrors

Longitudinal spectrum 1/30/97 used for backscatter modulation Horizontal spectrum 1/30/97 used for diffraction modulation

Baffle backscatter BRDF = $4.8 \times 10^{-3} \text{ sr}^{-1}$ Polished oxidized baffles

Mirror scattering BRDF =
$$\frac{1 \times 10^{-6}}{\theta^2}$$
 Initial mirrors

Longitudinal spectrum 1/30/97 used for backscatter modulation Horizontal spectrum 1/30/97 used for diffraction modulation

Baffle backscatter BRDF = $4.8 \times 10^{-3} \text{ sr}^{-1}$ Polished oxidized baffles

Mirror scattering BRDF =
$$\frac{2.5 \times 10^{-7}}{\theta^2}$$
 Super polished GO mirrors

Longitudinal spectrum 1/30/97 used for backscatter modulation Horizontal spectrum 1/30/97 used for diffraction modulation

Alternative Materials Optical Performance

Material	Oxide	BRDF @1μm, 55° 1000•sr ⁻¹	R	R ² •BRDF _{wall} 1000•sr ⁻¹ 860+6016	Sum 1000•sr ⁻¹	Effect on Strain Sensitivity
Glass	_	1-3	< .13	< 1	1-3	1
#2B	none	1-3	.555	15-18	16-21	3
#2B	450°C, 4hr	1-4	.445	10-12	11-16	2.5
#2B	450°C, 8hr	4	.3545	7-12	11-16	2.5
#2B	450°C, 40hr	13	.224	3-10	16-23	3
Grit-blasted SS	glass firing process	60	diffuse	_	60	6
BT wall mat'l		30	diffuse	_	30	4
. 01				•		

850°C, 10 min.

4

0.1

41

4

1.4

Status of Backup Oxidized 304SS (shiny) Baffles

Jan - Mar

- >> Procured BA 304SS material for 50 baffles
- >>Unexpected delays in reproducing oxidation recipe derived by Weiss in 1995
 - Original recipe: 8 hr @ 450C
 - Determined a need to fire second time for 2 passes in WCP tunnel oven @ 850C
 - Baffles delivered by Capitol Ind. from bake (Wash.
 Metallurgical) were too dirty to use without another cleaning.
 - H₂ outgassing measured to be at instrument noise floor (LIGO/VTF)
 - >> "Ruined" first 20 baffles cleaned using WCP (NaOH + grime) dip
- >> Finally obtained 27 baffles with visual/optically acceptable appearance
 - >> Dual steam cleaning in WA
 - >>These had high Auger C peaks 1/2 as dirty as BT w/ oil
 - >> Decided in the end to install:
 - Few baffles
 - Wanted data point on installation difficulties
 - The treatment @ 850C after a 450C/8hr bake made us comfortable that any C on material IS NOT HC --> elemental C on steel surface

Status of Backup Oxidized 304SS (shiny) Baffles

Jan - Mar (continued)

- >> This proved to be a VERY EXPENSIVE sequence:
 - 2 steam cleanings in WA
 - 2 bakes (WA 450C/8Hr; CA 850C/10min)
 - 2 shipments (WA->CA->WA)
- >> Procured enough 304SS BA material to make 1100 new baffles
 - cost of matl: \$2/lb@20lb/baffles X 1000 baffles = \$40k
 - matl hard to find -- "insurance"

Today

- >> Seeking to streamline process
 - Fab @ Capitol (Seattle)
 - Ship to local (southern Cal.) steam cleaner get better turnaround on unforeseen developments
 - Bake once @ WCP
 - Ship to Hanford
- >> Had 100 1" x 18" strips of new BA matl cut @ CES for tests
 - Immediate shipment of 3 to Weiss Auger/small scale bake/ optical tests

Raw matl is quite clean - after proper cleaning expect excellent cleanliness

10 min bake @ 850C gives acceptable "blued"

10 min bake @ 850C gives acceptable "blued" matl

- Planning to fire 50 @ WCP this week to get statistics and for H₂ outgassing evaluation in LIGO VTF
- Will have Capitol start immediately making 100 baffles (originally for X arm and 1st installment on Y arm)

Status of Backup Oxidized 304SS (shiny) Baffles

- Today (continued)
 - >> Last Friday tried to install 27 baffles on X arm
 - 16 hours of work resulted in only 7 being installed
 - Lessons learned

Field Experience in Installing Baffles Deeply into a Beam Tube Module

Transportation Issues:

- >> A wheeled cart is important: back & leg cramps experienced from walking stooped
- >> The position of the baffle being carried by the cart dictates the amount that the baffle will have to be "wound up"; a baffle too tightly wound is difficult to unwind for installation and may cause damage to the stitch welds
- >> The cart wheel size, wheel material, and travel speed need to be carefully selected to minimize jolts over expansion joints and to:
 - minimize contamination from wheel breakup and leaving abraded material
- minimize the potential for bronze particle contamination found in expansion joint grooves (currently not understood; may be from the cart travel)

Protective Clothing Issues:

- >> Propelling the cart with feet leaves abraded contaminants from booties (or shoes, if booties are deleted); these should be checked for removal requirements
 - >> Care must be taken to prevent abraded clothing/bleeding due to cart falls

Field Experience in Installing Baffles Deeply into a Beam Tube Module

Cleaning Issues:

- >> We may need to secure/develop a battery powered "DustBuster" (with a HEPA filter on its exhaust?) for final cleaning in the tube. Current plans to use a (water) wetted cloth for particle pickup do not fully address known problems:
 - abraded material may be too small to see and pickup
- water is not appropriate for use nearer the ends of the modules, where BDF air will not have as much time to effect microdrying; alcohol may not be a good substitute, depending upon concentration vs. air flow volume

COST ESTIMATE

- AVERAGE COST OF PRESENT BAFFLES
 ~\$100K/MODULE \$800K TOTAL
- ESTIMATED COST OF BAFFLE FIX (PER MOD)
 \$12.5K (MIN)
 \$100K (MAX)
- COST OF INSTALLING BAFFLES (CREW OF 4 FOR 6 WKS PLUS SOME EQUIPMENT \$60K/MODULE

 CASE-I DELTA COST 	\$920K -	\$220K
 CASE-II DELTA COST 	\$1040K -	\$340K
 CASE-III DELTA COST 	\$1160K -	\$460K

	1997									ľ	99	8											
	JAH	FEB	MAR	APR	MAY	אטנ	JUL	AUG	SEP	ост	нол	DEC	JAH	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCTN	OVDE
CBIL BT TNSTALLATION;																							
washington arm-2																							
washington arm-1																							
Louisiana arm-2																							
Louisiana arm -1																							
Resolve Boffle issues	_		\3/r				,																
Baffles Needed Refurbish orma	<u></u>		1	4/1					oiw o	2													
Resolve Baffle issues	-			GA.	- L	i and		7	Zalı														
Baffles Deeded Refurbigh arms	<u> </u>										<u></u>	arn	1 14 ma	2									_
Resolve Baffle issues	.400		\$70.PE	0497 3 00			4054 4330			7	Z"/r												
Boffles Needed Refurbish arm-2	+							-				1	7//	arm	10	rm4		_La arm-					
Beam Tube Bakeout (wa)																154	nod		~-				
Vacuum Equipment Installation (PSI)									ω,	shin	2 to							ann			,		
															PRE	PARE	D BY	:				DATE:	
																ROVE						DATE:	

List of Exhibits

Oxidized 304SS samples

- coppertone strip (1" x 18"); 8 hours @ 450C
- blued strip (1" x 6"); same as above plus 2X in WCP tunnel
 @ 850C (estimated time @ max. temp. 12 minutes)
- tag # 60; WCP process only: NaOH dip + dip rinse, 2X @ 850C
- blued plate (6" x 8") L1; home wash + 1X @ 850C, WCP
- blued plate (6" x 8") l2; home wash + 3X @ 850C, WCP
- · Glass flake samples

	2/18/97	5 day baseline	
#52	2/20/97	1 st temp cycle	Serrated, extreme shedder
	2/25/97	2 nd temp cycle	
#54	2/20/97	1 st temp cycle	Serrated, nominal shedder
н го	2/20/97	1 st temp cycle	Anna NIC I and annual a
#58	2/25/97	2 nd temp cycle	type NS, best example
#73	2/20/97	1 st temp cycle	Serrated, thin glaze
#69	2/25/97	2 nd temp cycle	O ₂ rich flame treatment
#83	2/25/97	2 nd temp cycle	O ₂ rich flame treatment

