Core Optics Support Design Requirements Review

Friday, March 4, 1997

@ 8:30 AM Pacific, 11:30 AM Eastern

Caltech Science Conference Room/MIT Library

Chair: David Shoemaker

Presented by:

Michael Smith

Core Optics Support Product Perspective

Pick-off Beams for ASC/LSC

- \rightarrow ITM_x and ITM_y PO
- \rightarrow ETM_x and ETM_y PO
- >>RM PO
- >> DPS Output
- >>RPS Output (belongs to IOO)
- Beam-reducing Telescopes for PO Beams
- Output Vacuum Windows for PO Beams
- Beam-dumps for Specular Ghost Beams
- Stray Light Baffles Around COC

Schematic Layout of COS

Pick-off Beams and Ghost Beams

BSC Chamber with Baffles Top View

¥ √z

BSC Chamber with Baffles Side View

Y Lx_Z

Beam-dump Black Glass Detail

Beam-dump/baffle Concept ITM

RM Beam-dump/baffle Concept

Elevation View

4K BS Beam-dump/baffle elevation view

Elevation View

4K BS Beam-dump/baffle plan view

2K BS Beam-dump/baffle Edge Diffraction Effects

ETM Beam-dump/baffle Elevation View

Backscattered Power from DPS Beam

DPS Scattered Light Noise/Signal Ratio

DPS Scattered Light Phase Noise Current

$$i_{sDPS} \propto \sqrt{RP_{sDPS}} \cdot \frac{4\pi x_{vh}(f)}{\lambda}$$

 P_{sDPS} , light backscattered through the dark port into the IFO; R, reflectivity of FP; $x_{vh}(f)$, horizontal displacement of scattering surface

Gravity Wave Signal Current

$$i_g \propto \sqrt{P_{BS}} \cdot \frac{8\pi X(f)}{T\lambda \sqrt{1 + \left(\frac{f}{f_0}\right)^2}}$$

 P_{BS} , carrier power on BS: $P_{BS} = G_{rc} \cdot P_0$

X(f), gravity wave mirror displacement

Grc, gain of recycling cavity; P0, laser power incident on the RM; T, transmissivity of ITM

Scattered Light Noise/Signal Ratio

$$\frac{i_{sDPS}}{i_g} = \frac{T_{\sqrt{R\left(1 + \left(\frac{f}{f_0}\right)^2\right)}}}{2} \cdot \frac{x(f)}{X(f)} \cdot \frac{1}{\sqrt{G_{rc}}} \sqrt{\frac{P_{sDPS}}{P_0}} = K_{DPS} \sqrt{\frac{P_{sDPS}}{P_0}}$$

$$K_{DPS} = 3 \times 10^5$$
; @ $X_{SRD}(100Hz) = 1 \times 10^{-19} \frac{m}{\sqrt{Hz}}, x_{vh}(100Hz) = 1 \times 10^{-11} \frac{m}{\sqrt{Hz}}$

K_i Values for Vacuum Housing and SEI Mounted Surfaces

Generalized Scattered Light Noise/Signal Ratio

$$\frac{i_{si}}{i_g} = K_i \sqrt{\frac{P_{si}}{P_0}}$$

• K_i Values

Scattered Light Phase Noise Current Transfer Coefficient (K_i) for Scattering from Surfaces Mounted on Vacuum Housing and SEI Platform, for Initial LIGO Sensitivity

Surface Mount	Scattering Path	K _i @ 30Hz	K _i @ 100Hz	K _i @ 1000Hz
Vacuum housing	ITM PO to window on vac housing into recycling cavity	3 x 10 ⁵	3 x 10 ⁵	6 x 10 ²
	DPS to window on vac housing into BS	3 x 10 ⁵	3 x 10 ⁵	6 x 10 ²
	ETM PO to window on vac housing into arm cavity	2 x 10 ⁴	2 x 10 ⁴	40
	RPS from vac housing into symmetric recycling cavity	3×10^3	3×10^3	6
SEI	ITM GB and BS GB to beam-dump on SEI into recycling cavity	300	50	0.3

Allocation of Noise Budget

Noise Contributions from Scattering Paths

>>Noise contributed by an individual source

$$\left(\frac{is_i}{i_g SRD}\right)^2 = K_i^2 \cdot \frac{P_{si}}{P_0}$$

>>Total noise budget

$$\left(\frac{is}{i_g SRD}\right)^2 = N_1 \cdot K^2_1 \cdot \frac{P_{s1}}{P_0} + N_2 \cdot K^2_2 \cdot \frac{P_{s2}}{P_0} + \dots + N_m \cdot K^2_m \cdot \frac{P_{sm}}{P_0} \le \left(\frac{1}{10}\right)^2$$

Noise Allocation Factor

$$F_{i} = \frac{N_{i} \cdot (K_{i})^{2} \cdot P_{si} / P_{0}}{\sum N_{i} \cdot (K_{i})^{2} \cdot P_{si} / P_{0}}.$$

Scattered Light Requirement per Source

$$\binom{P_{si}}{P_0}_{REQ} \le \frac{F_i}{N_i \cdot K_i^2} \cdot \left(\frac{1}{10}\right)^2$$

LIGO

LIGO-G970067-00-D

Calculation of Backscattered PO and GB Power into IFO

Backscattered Light Power

$$P_{s} = P_{i} \cdot T \cdot [\cos \theta_{iwo} \cdot BRDF_{wo}(\theta_{s})] \cdot \Delta \Omega \cdot \frac{1}{M^{2}} \cdot A_{i}$$

 P_i , incident power on scattering surface T, transmission factor through COC into IFO BRDF, bidirectional reflection distribution function $\Delta\Omega$, solid angle of IFO beam M, demagnification of incident beam

 A_i , additional attenuation of scattered beam

Implied BRDF of Scattering Surface

$$BRDF_{i}(\theta_{s}) = \left(\frac{P_{i}}{(P_{s})_{REQ}} \cdot T \cdot [\cos \theta_{i}] \cdot \Delta \Omega \cdot \frac{1}{M^{2}} \cdot A_{i}\right)^{-1}$$

Backscattered Power from ETM PO Beam

$$P_{sETMPO} = 1.2 \times 10^{-11} watts, BRDF \le 8 \times 10^{-4} sr^{-1}$$

Backscattered Power from ITM PO Beam

Summary of Scattered Light Requirements

• Vacuum Housing Mounted Surfaces

4K IFO Scattered	Light Requirements	@ 100 Hz, I	P _{laser} =6w, G _{rc} =50, M=1/72.

Scattering path	Number of beams	Power incident on surface, P _i , watt	Noise allocation factor	Scattered light requirement, $(P_s)_{REQ}$, watt	Attenuation of scattered light path	Implied BRDF of all surfaces in demagnified output beam, sr ⁻¹
I _{DPS-vh-BS}	1	0.30	0.30	<2.0×10 ⁻¹³	$A_{FI} = 0.001$	$8 \times 10^{-4} sr^{-1}$
I _{ITMPO-vh-ITM}	2	0.15	0.27	<1.8×10 ⁻¹³	$R_{ITM} = 1 \times 10^{-3}$	$8 \times 10^{-4} sr^{-1}$
I _{ETMPO-vh-ETM}	2	0.39	0.08	<1.2×10 ⁻¹¹	$T^2_{ND} = 0.04$	$8 \times 10^{-4} sr^{-1}$

SEI Mounted Surfaces

>>backscattering from SEI mounted surfaces is 10⁻¹⁰ times smaller than the requirement for scattering from vacuum housing mounted surfaces and can be ignored.

SUS Mounted Surfaces

>>scattering from the surfaces of the COC can be ignored in comparison with scattering of PO beams from output windows.

Separation Margin of PO Beam from Main Beam

Core Optics Wedge Angle Characteristics

Component	Wedge Angle	axis deviation angle	COC height above ITM- ETM axis	Distance to pick-off location	Separation margin of PO from main beam
RM	2°24′±5′	-1.083°	8.7 cm	2.0 m	7.1 cm
BS	1°±5′	0.558°	4.4 cm	4.8 m	8.6cm
ITM	1°10′±5′	0.525°	0.0 cm	4.8 m	10.9 cm
ETM	2°±5′	0.899°	0.0 cm	2.0 m	2.9 cm

4K IFO Core Optics Wedge Angle Characteristics

PO Beam-reducing Telescope Optical Layout

Requirements for Beamreducing Telescopes

Property	Value		Comment
	RM, ITM, DPS	ETM	
configuration	off-axis parabolic	off-axis spherical	
total curvature and astigmatism aberration ^a	<λ/4 peak-valley @ λ=1.06 micron	<5λ peak-valley @ λ=1.06 micron	<i>RM</i> , <i>ITM</i> , <i>DPS</i> : TEM_{00} - TEM_{01} Guoy phase uncertainty <10 deg
total higher order aberrations ^b	<λ/20 peak-valley @ λ=1.06 micron	<1λ peak-valley @ λ=1.06 micron	<i>RM, ITM, DPS</i> : TEM ₀₀ -TEM ₀₁ Guoy phase uncertainty <10 deg
input clear aper- ture diameter	156 mm	156 mm	RM, ITM, DPS:@100 ppm beam power diameter, <1% loss in WFS signal; ETM:@ 3000ppm diameter
output clear aper- ture diameter	15.6 mm	15.6 mm	compatible with ASC input requirements
Internal resonance and Q	TBD	TBD	
output beam parameter	3.64 mm	3.64 mm	
output beam waist location	TBD	TBD	compatible with ASC input requirements
magnification	0.1X	0.1X	compatible with ASC input requirements

a. based on a private communication from Daniel Sigg regarding an estimate of the ASC signal loss with a $\lambda/4$ peak-valley wavefront aberration @ $\lambda=1.06$ micron

b. same as above

Requirement for PO Beam Output Window

Wavefront Distortion

Optical path length distortion with two surfaces $OPD = 2 \cdot (1-n) \cdot \Delta t$ Wavefront distortion with surface figure $\Delta t = \frac{\lambda}{20}$, $OPD = 0.045\lambda$

Summary of Requirements

Property	Value	
material	fused silica	
thickness	TBD	
substrate diameter	TBD	
wedge	34°±5′	
clear aperture	>20 mm	
surface figure	$\lambda/20$ per surface over clear aperture	
AR coating, both surfaces	<.001 @1064 nm, @ 55.4° incidence angle, p- polarization	
BRDF _{wo}	$< 5x \ 10^{-2} \ sr^{-1}$	
Vacuum properties	Vacuum Equipment Specification, LIGO- E940002-02-V	

Requirements for PO Beam Vacuum Window

COS TBD Issues

Testing and Fixtures

>>BRDF measurement apparatus for COS surfaces

>>Test equipment for receiving inspection

>>Telescope alignment fixtures

>>IFO Ghost and PO beam location sensor, for initial alignment

• Beam-reducing Telescope

>>position of output beam waist, magnification ratio, cost trade-off

• Output Window

>>substrate diameter and thickness

- Resonant Frequencies and Damping of COS Elements Mounted on SEI Platforms
- BRDF of ASC/LSC Optical Surfaces

Mock-up of BSC and HAM Stations

Needed for the Determination of:

- Configuration of Beam-dump/baffles
- Telescope configuration, size, and mounting constraints
- Mounting Configurations and Interfaces with other Subsystems on SEI Platform
- Stay-Clear Zones for PO Beams
- Access for Optical Levers, and COC TV Cameras
- Installation and alignment procedures
- Maintenance access

