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Outline
• LIGO test mass charging is a growing concern for LIGO

– Charging mechanism
– Consequences

• Deep UV LED based AC charge management is expected to
be an effective mitigation
– Heritage from GP-B precision flight
– High frequency AC modulation to reduce disturbances
– Out of GW signal band modulation (10 kHz)
– New dimensions of measurements and calibrations

• Stanford ongoing experimental efforts
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LIGO Test Mass Charging

• Test mass charging due to:
– Cosmic ray ionization (Braginsky G020033)
– Pumping system transportation (Rowan CQG 14 1537)
– Dust rubbing transfer (Harry, G040063)

• Test mass charging consequences:
– Reduction of suspension Q (Rowan, Harry)
– Non-Gaussian noise due to charge hopping (Weiss)
– Possible noisy forces due to other charged bodies
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LIGO Test Mass Charges Accumulation
Charges can accumulate on LIGO test mass for several months

*From Braginsky LIGO-G020033

Charge Control Necessary
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Gravity Probe-B
A Stanford-Marshal-Lockheed Satellite Program

A Precision Space Flight Required Charge Management

GP-B selected UV over
cathode discharge

LISA selected GP-B
technology as the charge
management baseline
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GP-B Charge Management R&D Heritage at Stanford
GP-B charge management (Buchman 1993)

– R&D since 1990’s
– Non-contact charge transfer by UV light
– Critical to GP-B mission success

• Initial gyro lifting-off
• Continuous charge management during science

measurement

[Buchman 1993] Saps Buchman, Theodore Quinn, G. M. Keiser, and Dale Gill,
“Gravity Probe B Gyroscope charge control using field-emission cathodes,”
J. Vac. Sci. Technol. B 11 (2) 407-411 (1993)
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UV Photon Source Requirements for LIGO
Test Mass Charge Management

• Qc~10-7 C/m2 commonly cited
• Charging rate Qc~10-7C/day
• Ne~1012 electrons/day
• Photoelectric “Q. E.”: ~10-5

• UV photons required: N=1017

• PUV = Nhc/T = 8.9x10-7 W
• PUV ~ 1 W (average power over a day)
• Dynamic Range ~ 1000,

PUV ~ 1 mW (Peak power)
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UV Illumination Schemes

• Direct illumination
– UV mercury lamp is

routinely used for
attachment removal

– UV LED has sufficient
power for cw direct
illumination

– Possibly works

• Illumination on coatings
– Au coating on non-critical

portions of test mass and
suspension structure

– Photoelectric effect on Au
surface has been utilized in
GP-B and ST-7

– Higher throughput in charge
control
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UV LED vs. Mercury Lamp

UV LED
– TO-39 can packaging
– Fiber output with ST connector
– Reduced weight
– Power saving
– Reduced heat generation, easy

thermal management near GRS

GP-B CMS in Flight
- 2 Hg Lamps
- Weight: 3.5 kg
- Electrical Power 7~12 W

(1 lamp on, 5 W for lamp,
5 W TEC cooler)
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UV LED Spectrum Measured at Stanford
• Peak wavelength: 257.2 nm, comparable to Hg line 254 nm
• FWHM: 12.5 nm, good photoemission for Au coatings
• Total UV power: 0.144 mW, sufficient for charge management
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Au Photodiode Photocurrent Response vs.
Fiber-Tagged UV LED Current

Efficient Photoelectron Emission Observed

Au Phototube Response to Fiber-Tagged UV LED Current
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Advantages of direct replacement
of mercury lamp with UV LED:

• Significant power saving
– 1 W for UV LED CMS

(including all control
electronics)

– 15 W for Hg lamp CMS
• Significant weight reduction

– 4~5 kg per spacecraft
– 12~15 kg for launch

• Easy environmental
management:

– Less heat generation near
GRS module

– Much less EMI (Au phototube UV power calibration ~16W/mA)
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UV LED Charge Management
Experimental Setup

• GP-B heritage
• Au coating on
proof mass and housing
to simulate LISA GRS

• Fiber connected UV
LED driven by modulated
current source

• Housing electrode
modulation phase-
locked to UV modulation

• UV light shining on
proof mass and reflected
onto housing electrode

• Sensitive electrometer to
measure the proof
mass potential
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UV LED Charge Management System Has Potential
Significant Scientific Pay Off

Direct Replacement of
Mercury Lamp with
UV LED ---
Save electrical power --- ~15 W per

spacecraft
• The power can be used to double

the laser power ---
– Enhance sensitivity by 41%,
– Increase event rate and

detection volume by a factor
of 282%.

– Significant astrophysical
observational pay off
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AC Charge Management
Enabled by Fast Direct Modulation of UV LED

UV modulation is in phase with the
negative AC ½ Cycle: Photoelectrons
only produced during negative bias,
and transported to proof mass

UV modulation is in phase with the
positive AC ½ cycle: Photoelectrons
only produced during positive bias,
and transported to housing electrodes

• No need for dedicated DC bias, simplified structure
• Any AC electrical field such as capacitive readout or electrostatic forcing voltages can be used
• UV modulation can be out-of signal band high frequency, minimizing disturbances
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Positive Charge Transfer
UV LED and bias voltage modulated at 1 kHz

UV phased to positive AC ½ cycle

Electrons fly to housing electrode
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Negative Charge Transfer
UV LED and bias voltage modulated at 1 kHz
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UV phased to negative AC ½ cycle

Electrons fly to proof mass

Proof mass potential decreases
UV
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UV LED Based AC Charge Management

Results for AC charge transfer studies using a UV LED with observed power or ~11 mW at a
center wavelength of 257.2 nm. The image on the left shows the UV test facility. The figure
shows both charging and discharging over a proof mass potential of +/- 20 mV.
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UV LED vs. Mercury Lamp Based Charge
Management System

Category UV LED CMS Mercury Lamp CMS
Electrical Power Consumption 1 W 15 W
EMI Minimal Large due to RF excitation
Weight 0.3 kg 3.5 kg
Dimension of the CMS system 10 cm x 8 cm x 3 cm 17 cm x 13 cm x 17 cm
UV emission power ~120W ~100 W
UV Power at the fiber tip ~16W ~11W
UV Wavelength, central 257 nm 194 nm & 254 nm
UV Wavelength, spread 12.5 nm Doppler Broadening
Fast modulation capability Yes – Intensity, pulse

train frequency and
phase, etc.

No

Charge management method AC & DC DC only
Charge management frequency Out-of signal band In signal band
Equivalent dynamic range 100,000 100
Charge management resolution high low
Charge management speed high low
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UV LED Lifetime Experiment

HP Signal
Generator

Nitrogen
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ILX laser
Driver
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Computer

Modulation
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UV LED

UV diode
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UV LED Modulation Direct Readout

Signal from
UV Photodiode

UV LED driver
voltage

Driving signal
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Continued Experiments at Stanford
• UV LED lifetime measurement

- GaN is an intrinsically better radiation-hard material
- Operate UV LED under realistic working conditions for AC charge

management
- Measure the output power level of UV LED over time
- First step of space qualification

• UV Photoelectron energy measurement
- Measure the kinetic energy of the photoelectrons
- Deduce work function distribution on the proof mass surface
- Provide surface analysis for contamination patches
- Correlation to surface reflectivity for calibration of optical sensing

• Science outreach students involvement
- Research opportunities provided to local high school students


