



# LIGO Test Mass Charging Mitigation Using Modulated LED Deep UV Light

LIGO-G060172-00-Z







### Ke-Xun Sun, Sei Higuchi, Brett Allard, Dale Gill, Saps Buchman, and Robert Byer Stanford University

#### LIGO Science Collaboration (LSC), OWG & SWG Joint Meeting LIGO Hanford Observatory, March 22, 2006



K. Sun, B. Allard, S. Williams, S. Buchman, and R. L. Byer, "LED Deep UV Source for Charge Management for Gravitational Reference Sensors," presented at Amaldi 6 Conferences on Gravitational Waves, June 2005, Okinawa, Japan. Accepted for publication at Classical Quantum Gravity, as a highlight of the Amaldi 6<sup>th</sup> conference.

LIGO Science Collaboration Meeting Hanford, March 19-23, 2006







# Outline

- LIGO test mass charging is a growing concern for LIGO
  - Charging mechanism
  - Consequences
- Deep UV LED based AC charge management is expected to be an effective mitigation
  - Heritage from GP-B precision flight
  - High frequency AC modulation to reduce disturbances
  - Out of GW signal band modulation (10 kHz)
  - New dimensions of measurements and calibrations
- Stanford ongoing experimental efforts









# LIGO Test Mass Charging

- Test mass charging due to:
  - Cosmic ray ionization (Braginsky G020033)
  - Pumping system transportation (Rowan CQG **14** 1537)
  - Dust rubbing transfer (Harry, G040063)
- Test mass charging consequences:
  - Reduction of suspension Q (Rowan, Harry)
  - Non-Gaussian noise due to charge hopping (Weiss)
  - Possible noisy forces due to other charged bodies







Charges can accumulate on LIGO test mass for several months



\*From Braginsky LIGO-G020033



LIGO Science Collaboration Meeting Hanford, March 19-23, 2006







## Gravity Probe-B

### A Stanford-Marshal-Lockheed Satellite Program A Precision Space Flight Required *Charge Management*



LISA selected GP-B technology as the charge management baseline





LIGO Science Collaboration Meeting Hanford, March 19-23, 2006









### GP-B charge management (Buchman 1993)

- R&D since 1990's
- Non-contact charge transfer by UV light
- Critical to GP-B mission success
  - Initial gyro lifting-off
  - Continuous charge management during science measurement







[Buchman 1993] Saps Buchman, Theodore Quinn, G. M. Keiser, and Dale Gill, "Gravity Probe B Gyroscope charge control using field-emission cathodes," J. Vac. Sci. Technol. B 11 (2) 407-411 (1993)



6



LIGO Science Collaboration Meeting Hanford, March 19-23, 2006



UV Photon Source Requirements for LIGO Test Mass Charge Management

- $Q_c \sim 10^{-7} \text{ C/m}^2$  commonly cited
- Charging rate  $Q_c \sim 10^{-7}$ C/day
- $N_e \sim 10^{12}$  electrons/day
- Photoelectric "Q. E.":  $\eta \sim 10^{-5}$
- UV photons required:  $N=10^{17}$
- $P_{UV} = Nhc/\lambda T = 8.9 \text{x} 10^{-7} \text{ W}$
- $P_{UV} \sim 1 \,\mu\text{W}$  (average power over a day)
- Dynamic Range ~ 1000,
  P<sub>UV</sub> ~ 1 mW (Peak power)









# **UV Illumination Schemes**

- Direct illumination
  - UV mercury lamp is routinely used for attachment removal
  - UV LED has sufficient power for cw direct illumination
  - Possibly works

- Illumination on coatings
  - Au coating on non-critical portions of test mass and suspension structure
  - Photoelectric effect on Au surface has been utilized in GP-B and ST-7
  - Higher throughput in charge control







LIGO Science Collaboration Meeting Hanford, March 19-23, 2006





## UV LED vs. Mercury Lamp





### UV LED

- TO-39 can packaging
- Fiber output with ST connector
- Reduced weight
- Power saving
- Reduced heat generation, easy



thermal management near GRS LIGO Science Collaboration Meeting Hanford, March 19-23, 2006

#### **GP-B CMS in Flight**

- 2 Hg Lamps
- Weight: 3.5 kg
- Electrical Power 7~12 W
  (1 lamp on, 5 W for lamp, 5 W TEC cooler)







## UV LED Spectrum Measured at Stanford

- Peak wavelength:
- 257.2 nm, comparable to Hg line 254 nm

• FWHM:

- 12.5 nm, good photoemission for Au coatings
- Total UV power:
- 0.144 mW, sufficient for charge management





LIGO Science Collaboration Meeting Hanford, March 19-23, 2006







## Au Photodiode Photocurrent Response vs. Fiber-Tagged UV LED Current Efficient Photoelectron Emission Observed

Advantages of direct replacement of mercury lamp with UV LED:

- Significant power saving
  - 1 W for UV LED CMS (including all control electronics)
  - 15 W for Hg lamp CMS
- Significant weight reduction
  - 4~5 kg per spacecraft
  - 12~15 kg for launch
- Easy environmental management:
  - Less heat generation near GRS module
  - Much less EMI



(Au phototube UV power calibration ~16µW/mA)



LIGO Science Collaboration Meeting Hanford, March 19-23, 2006





# UV LED Charge Management Experimental Setup



- GP-B heritage
- Au coating on proof mass and housing to simulate LISA GRS
- Fiber connected UV LED driven by modulated current source
- Housing electrode modulation phaselocked to UV modulation
- UV light shining on proof mass and reflected onto housing electrode
- Sensitive electrometer to measure the proof mass potential







Direct Replacement of

Mercury Lamp with UV LED ----

- Save electrical power --- ~15 W per spacecraft
- The power can be used to double the laser power ---
  - Enhance sensitivity by 41%,
  - Increase event rate and detection volume by a factor of 282%.
  - Significant astrophysical observational pay off



**Comparable Discharge Rates For First UV LED Experiment** 



13





# AC Charge Management



### Enabled by Fast Direct Modulation of UV LED

- No need for dedicated DC bias, simplified structure
- Any AC electrical field such as capacitive readout or electrostatic forcing voltages can be used
- UV modulation can be out-of signal band high frequency, minimizing disturbances



UV modulation is in phase with the *positive* AC ½ cycle: Photoelectrons only produced during positive bias, and transported to housing electrodes



LIGO Science Collaboration Meeting Hanford, March 19-23, 2006



UV modulation is in phase with the *negative* AC ½ Cycle: Photoelectrons only produced during negative bias, and transported to proof mass





## **Positive Charge Transfer**



#### UV LED and bias voltage modulated at 1 kHz





## Negative Charge Transfer

#### UV LED and bias voltage modulated at 1 kHz

#### May 6, 2005 Negative Charge Transfer Phasing





UV phased to negative AC ½ cycle Electrons fly to proof mass Proof mass potential decreases



16



LIGO Science Collaboration Meeting Hanford, March 19-23, 2006





## UV LED Based AC Charge Management



Results for AC charge transfer studies using a UV LED with observed power or ~11 **m**W at a center wavelength of 257.2 nm. The image on the left shows the UV test facility. The figure shows both charging and discharging over a proof mass potential of +/- 20 mV. LIGO Science Collaboration Meeting 17 Hanford, March 19-23, 2006 LIGO\_LSC\_Sun\_UVLED\_060322.ppt, K. Sun







# UV LED vs. Mercury Lamp Based Charge Management System

| Category                     | UV LED CMS             | Mercury Lamp CMS           |
|------------------------------|------------------------|----------------------------|
| Electrical Power Consumption | 1 W                    | 15 W                       |
| EMI                          | Minimal                | Large due to RF excitation |
| Weight                       | 0.3 kg                 | 3.5 kg                     |
| Dimension of the CMS system  | 10 cm x 8 cm x 3 cm    | 17 cm x 13 cm x 17 cm      |
| UV emission power            | ~120 µW                | ~100 µW                    |
| UV Power at the fiber tip    | ~16 µW                 | ~11 µW                     |
| UV Wavelength, central       | 257 nm                 | 194 nm & 254 nm            |
| UV Wavelength, spread        | 12.5 nm                | Doppler Broadening         |
| Fast modulation capability   | Yes – Intensity, pulse | No                         |
|                              | train frequency and    |                            |
|                              | phase, etc.            |                            |
| Charge management method     | AC & DC                | DC only                    |
| Charge management frequency  | Out-of signal band     | In signal band             |
| Equivalent dynamic range     | 100,000                | 100                        |
| Charge management resolution | high                   | low                        |
| Charge management speed      | high                   | low                        |









# UV LED Lifetime Experiment





LIGO Science Collaboration Meeting Hanford, March 19-23, 2006

LIGO\_LSC\_Sun\_UVLED\_060322.ppt, K. Sun







## UV LED Modulation Direct Readout





LIGO Science Collaboration Meeting Hanford, March 19-23, 2006

LIGO\_LSC\_Sun\_UVLED\_060322.ppt, K. Sun







# Continued Experiments at Stanford

## • UV LED lifetime measurement

- GaN is an intrinsically better radiation-hard material
- Operate UV LED under realistic working conditions for AC charge management
- Measure the output power level of UV LED over time
- First step of space qualification

## • UV Photoelectron energy measurement

- Measure the kinetic energy of the photoelectrons
- Deduce work function distribution on the proof mass surface
- Provide surface analysis for contamination patches
- Correlation to surface reflectivity for calibration of optical sensing
- Science outreach students involvement
  - Research opportunities provided to local high school students



