

WhiskyMHD: a New Numerical Code for General Relativistic Magnetohydrodynamics

Bruno Giacomazzo (SISSA, Italy)

collaborators: L. Rezzolla

LIGO-G060277-00-Z

Plan of the talk

- The need of a better (MHD) Whisky
- Outline of the code
- Testing the code
- Computation of initial models
- Summary and conclusions

Importance of Magnetic Fields

- GRB progenitors
- Jet formation from BH

Gravitational Waves from collapse and NS mergers

To study all these phenomena we need to evolve both Einstein and MHD equations

Previous works

GRMHD code with a non-evolutionary metric:

- Komissarov 1999, MNRAS 303, 343
- Gammie, McKinney and Toth 2003, ApJ 589,444
- De Villiers and Hawley 2003, ApJ 589, 458
- Nishikawa, Richardson, Koide, Shibata, Kudoh, Hardee and Fishman 2005, ApJ 625, 60
- Anton, Zanotti et al 2006, ApJ 637, 296

Full GRMHD codes:

• Duez, Liu, Shapiro and Stephens 2005, PRD 72, 024028

From Whisky to WhiskyMHD

With the Whisky code we were already able to study several different astrophysical scenario with attention to the emission of gws:

- The collapse of uniformly rotating NS
- The collapse of differentially rotating NS
- Head-on collision of two NSs
- Head-on collision of a Ns with a BH

Our goal is to extend all the work done so far to the case in which magnetic fields are present.

The WhiskyMHD code

- Full GR Magneto-Hydro-Dynamical Code
 - Based on the Cactus toolkit (www.cactuscode.org)
 - Solves the MHD equations on dynamical curved background
 - Uses HRSC (High Resolution Shock Capturing) methods
 - Implements a Constrained Transport scheme to enforce div-B=0 during the evolution
 - Can activate domain Excision
 - Implements the Method of Line
 - Adopts fixed and Progressive Mesh Refinement techniques (Carpet)

GRMHD equations

The metric is expressed in the usual 3+1 formalism

$$ds^{2} = -(\alpha^{2} - \beta_{i}\beta^{i})dt^{2} + 2\beta_{i}dx^{i}dt + \gamma_{ij}dx^{i}dx^{j}$$

Where α is the lapse, β^{i} is the shift vector, γ_{ii} is the spatial metric

The evolution of the magnetic field obeys Maxwell's equations:

$$F_{[\mu\nu,\lambda]}=0$$

that give the divergence free condition:

$$\vec{\nabla} \cdot \left(\sqrt{\gamma} \vec{B} \right) = 0$$

and the equations for the evolution of the magnetic field:

$$\frac{\partial}{\partial t} \left(\sqrt{\gamma} \vec{B} \right) = \vec{\nabla} \times \left[\left(\alpha \vec{v} - \vec{\beta} \right) \times \left(\sqrt{\gamma} \vec{B} \right) \right]$$

Matter Field evolution

 The evolution equations of the matter are given as usual by the conservation of the baryon number and energymomentum:

$$\nabla_{\mu}J^{\mu} = 0$$

$$\nabla_{\nu}T^{\mu\nu} = 0$$

$$J^{\mu} \equiv \rho u^{\mu}$$

$$T^{\mu\nu} = (\rho + \rho\varepsilon + p + b^{2})u^{\mu}u^{\nu} + \left(p + \frac{1}{2}b^{2}\right)g^{\mu\nu} - b^{\mu}b^{\nu}$$

plus an Equation of State $P=P(\rho,\varepsilon)$

HRSC in a slide

A generic problem arises when a Cauchy problem described by a set of *continuous* PDEs is solved in a *discretized form:* the numerical solution is, at least, *piecewise constant*.

This can be a serious problem in compressible fluids that generically produce nonlinear waves even from smooth initial data

In HRSC methods, each discretization-produced discontinuity is considered a local Riemann problem: a nuisance is turned into a useful property

- Riemann Problems:
 - All HRSC methods are based on the solution of Riemann problems, so the numerical code has been tested using also this type of problems
 - All the results were compared with the exact solution computed by BG, Rezzolla (J. Fluid Mech., 06)
- Excision Tests
 - Shock-Tube tests with an excised region

Curved background tests
 Spherical accretion on a Schwarzschild Black Hole
 Evolution of a stable magnetized NS

Test number 4 of Balsara (collision test)

Comparing the numerical solution (points) with the exact one (solid line)

B^y

Test number 2 of Balsara with an excised region

Comparing the numerical solution (points) with the exact one (solid line)

 B^z

Rest mass density

Spherical Accretion onto a Schwarzschild BH with a radial magnetic field

Relative error on the rest mass density vs magnetic field intensity

Computation of initial Models (Lorene code) Bocquet et al. 1995, A&A 301, 757

- To build initial models we are using the code Magstar included in Lorene and developed by J. Novak (Meudon) and others
- This code uses spectral methods to compute initial conditions describing both uniformly rotating and non rotating NS with magnetic fields:
 - it uses spherical coordinates and different equations of state
 - model are built after specifying: central enthalpy, angular velocity, mf distribution
- WhiskyMHD imports data from Magstar onto a cartesian grid

Non rotating NS with $B_c=3.1\cdot10^{16}G$

Non rotating NS with $B_c = 1.1 \cdot 10^{18} G$

Testing the code (work in progress!)

Evolution of a stable non rotating NS with $B_c=2.3\cdot10^{14}G$

These are the first calculations of an oscillating magnetized star. This is a whole new area which has not been investigated not even perturbatively.

Conclusions

- We have implemented the GRMHD eqs Whisky extending considerably its range of applications
- A long list of projects awaits to be tackled starting from the collapse of both uniformly rotating and non-rotating NSs with magnetic fields
- The differences in the gw signal will provide important information on the NSs which cannot be extracted from EM signals
- You will know more on this at the next GWADW meeting!...