Gravitational Wave Sources near 1 Hz <u>Avetis Abel Sadoyan</u>

• Mathew Benacquista

- D.Sedrakian,
- M.Hairapetyan,
- K. Shahabasyan

Montana State University-Billings

Yerevan State University

CRDF/NFSAT Award #ARP2-3232-YE-04

1

May 30, 2006 LIGO-G060282-00-Z

Outline

- White dwarf frequencies
- Gravitational radiation mechanisms
- Stochastic background level near 1 hz

Why White Dwarfs?

Why White Dwarfs?

- White Dwarfs(WD) are stellar configurations with central densities ~10⁶-10⁹ g/ cm³
 -they are on the border between normal stars and relativistic configurations
- Quadrupole moment of WDs is Q~10⁴⁸g cm²
 several orders higher then Neutron Star's Quadrupole moment

Why White Dwarfs?

- White Dwarfs(WD) are the most close potential sources of GWs
 - there are White Dwarfs at 8 pc distance.
- WD Population is estimated about ~10⁸ in the Galaxy

-WDs are the largest population among potential astrophysical sources of GWs

Strain Amplitudes

- Oblate shape due to rotation
- Oscillation is *self-similar* and is described by: $x_{\alpha} = x_{\alpha}^{0} (1 + \eta \sin(\omega t))$
- Quadrupole moment $Q_{ii} = \int \rho(x_i x_i - \frac{1}{3} x^2 \delta_{ii}) dV = Q_{ii}^0 (1 + \eta \sin(\omega t))$

Choose z-axis along rotation axis: $Q_{zz}^{0} = -2Q_{xx}^{0} = -2Q_{yy}^{0} = -2Q_{yy}^{0}$

May 30, 2006 LIGO-G060282-00-Z

Polarizations

In TT gauge with *z*-axis along the wave vector:

$$h_{+} = h_{xx} - h_{yy} = \frac{4GQ^{0}\eta\omega^{2}}{c^{4}r}\sin^{2}\theta\sin(\omega t)$$
$$h_{\times} = 2h_{xy} = 0$$

where θ is the angle between the wave vector and the white dwarf axis of rotation

May 30, 2006 LIGO-G060282-00-Z

Gravitational Radiation Intensity

$$J = \frac{6G}{5c^5} \eta^2 \omega^6 \left| Q_{zz}^0 \right|^2 \cos^2 \omega t' = J_0 \cos^2 \omega t'$$

$$J_{0} << \omega^{6} |Q^{0}_{zz}|^{2} \frac{6}{5} \frac{G}{c^{5}}$$

May 30, 2006 LIGO-G060282-00-Z

White Dwarf Properties and Resonant Frequencies

$ ho_{c}$ (g/cm ³)	M_0 (M _{\odot})	M (M _☉)	Ω_{\max}	Q^{0}_{max} (10 ⁴⁸ g cm ²)	N ₍₅₇₎	ω
1.76 106	0.498	0.572	0.196	20.48	0.4997	0.757
1.54 107	0.867	0.976	0.476	14.27	0.8398	0.766
1.28 108	1.145	1.254	1.063	4.766	1.0695	1.399
7.036 108	1.245	1.34	2.042	1.554	1.1340	2.001
2.09 109	1.257	1.339	3.105	0.673	1.1261	1.299

May 30, 2006 LIGO-G060282-00-Z

Frequency Range of WD Oscillations

May 30, 2006 LIGO-G060282-00-Z

Deformation Energy

$$W_{def}(\Omega) = (M - M_0)c^2 - W_r(\Omega)$$

• M and M_o are mass of rotating and nonrotating configurations with same complete number of baryons N $W = I \Omega^2 / 2$ A $M = (\alpha - \alpha) m \lambda$

$$W_r = I\Omega^2/2$$
 $\Delta M = (\alpha_0 - \alpha)mN$

May 30, 2006 LIGO-G060282-00-Z

White Dwarfs Maximal deformation Energy versus Central density

GW Amplitudes from WDs rotating with Keplerian angular velocities

Mechanisms of GW Radiation

- GWs from Magnetized WDs:

 -deformation energy is feeding oscillations
 -magnetodipol radiation torque is breaking rotation
- 2. GWs from differentially rotating WDs

3. GWs from triaxial WDs

May 30, 2006 LIGO-G060282-00-Z

Types of Models of WDs

- Model <u>1.a</u> is calculated by requiring that the largest Doppler broadening of spectral lines due to pulsations be less than thermal Doppler broadening
- Model <u>1.m</u> is based on assumption that all non-dissipated part of deformation energy is going to oscillations, it is maximal possible model to that sense.

GWs from Magnetized WDs 1.a

WD Name	r (pc)	B (MG)	h _o	F	t (Gy)	η
PG 1031+234	142	500	6.0 10 ⁻²⁹	6.1 10 ⁻¹⁷	11.0	1.02 10-02
EUVE J0317-855	35	450	1.0 10-27	6.7 10 ⁻¹⁵	1.7	4.03 10-03
PG 1015+015	66	90	9.3 10-30	1.1 10-18	571.9	7.09 10-04
Feige 7	49	35	1.6 10-28	4.9 10-17	125.1	5. 18 10 ⁻⁰⁴
G99-47	8	25	3.5 10-27	5.9 10-16	50.6	3.70 10-04
KPD 0253+5052	81	17	2.9 10-30	4.6 10-20	11852	3.46 10-04
PG 1312+098		10	1.5 10-30	3.8 10-21	70313.	2.04 10-04
G217-037	11	0.2	9.0 10 ⁻³¹	8.2 10-23	2 108	4.08 10-06

May 30, 2006 LIGO-G060282-00-Z

GWs from Magnetized WDs 1.m

WD Name	r (pc)	B (MG)	h ₀	F	t (Gy)	η
PG 1031+234	142	500	2.30°10 28 0.60.10-	15 	11.0	4.7·10 ⁻²
EUVE J0317-855	35	450	26 3 81.10	11 103.10	1.7	3.8·10 ⁻¹
PG 1015+015	66	90	28 1 47.10	1.00 10 15 	571.9	2.9·10 ⁻²
Feige 7	49	35	26 3 45.10	13 5 84.10	125.1	4.7·10 ⁻²
G99-47	8	25	25 206.10	12 	50.6	3.7·10 ⁻²
KPD 0253+5052	81	17	2.0010 28 0.38.10	16 156.10	70313	2.5·10 ⁻²
PG 1312+098		10	29 8 07 10-	1.00°10 17 8 10 10-	21	1.3·10 ⁻²
G217-037	11	0.2	29	19	·10 ⁷	4.1.10-4

May 30, 2006 LIGO-G060282-00-Z

Differentially Rotating WDs model 2.1

	Edifrot I	Ediss I	LifeTime (Gyr)	Jo I	ho	η Etta	F Flux
PG 1031+234	8.7411E+42	1.2574E+26	2,2	1.26E+25	1.39E-27	6.54E-01	3.3E-14
EUVE J0317-855	4.0005E+44	8.5162E+28	0,1	8.52E+27	5.86E-26	2.19E-01	2.2E-11
PG 1015+015	1.4919E+43	9.8724E+26	0,5	9.87E+25	4.39E-27	6.78E-01	2.6E-13
Feige 7	3.4674E+43	9.3271E+25	11,8	9.33E+24	3.63E-27	1.72E-01	2.4E-14
τ G99-47	1.6782E+44	4.5143E+26	11,8	4.51E+25	4.89E-26	7.83E-02	1.2E-13
KPD 0253+5052	7.0347E+42	1.012E+26	2,2	1.01E+25	2.18E-27	7.29E-01	2.6E-14
PG 1312+098	3.4271E+42	4.93E+25	2,2	4.93E+24	2.68E-27	1.04E+00	1.3E-14
G217-037	2.5262E+43	3.634E+26	2,2	3.63E+25	3.05E-26	3.85E-01	9.4E-14

Average

1.9E-26

Differentially Rotating WDs model 2.2

			LifeTime			η	
	Edifrot II	Ediss II	(Gyr)	Jo II	ho	Etta	Flux
PG 1031+234	3.638E+42	8.4434E+25	1,4	8.44E+24	1.14E-27	5.36E-01	2.2E-14
EUVE J0317-855	9.4765E+43	5.5308E+28	0,1	5.53E+27	4.72E-26	1.77E-01	1.4E-11
PG 1015+015	4.3709E+42	6.4883E+26	0,2	6.49E+25	3.56E-27	5.50E-01	1.7E-13
Feige 7	1.8693E+43	6.3832E+25	9,3	6.38E+24	3.00E-27	1.42E-01	1.7E-14
G99-47	9.0472E+43	3.0895E+26	9,3	3.09E+25	4.04E-26	6.47E-02	8.0E-14
KPD 0253+5052	2.9278E+42	6.7951E+25	1,4	6.80E+24	1.79E-27	5.98E-01	1.8E-14
PG 1312+098	1.4263E+42	3.3104E+25	1,4	3.31E+24	2.20E-27	8.56E-01	8.6E-15
G217-037	1.0514E+43	2.4402E+26	1,4	2.44E+25	2.50E-26	3.15E-01	6.3E-14

May 30, 2006 LIGO-G060282-00-Z

Triaxsial WDs model 3.r

• Rotating triaxsial ellipsoid

$\rho_c \times 10^6$, g/cm^3	M/M _{\Overline{O}}}	$R_e \times 1$ 0 ⁸	$I_3 \times 10^4$ g.cm ²	$\Omega_{ m max}$	H, km	ε×10 ⁻⁵	J ₀ ×10 ²⁹ erg/sec	h ₀	τ ₀ ×10 ² Gyear
2.403	0.5946	10.93	128	0.196	0.699	6.4	0.667	0.69 10-24	12.25
19.38	0.9993	7,342	88.6	0.476	0.187	2.56	10.5	1.13 10-24	3.19
157.7	1.2731	4.625	39.5	1.063	0.058	1.26	62.1	1.23 10-24	1.19
866.1	1.3502	3.044	15.9	2.04	0.024	0.784	197	1.14 10-24	0.56
2586	1.3412	2.287	8.17	3.11	0.014	0.059	373	1.03 10-24	0.35

Triaxsial WDs model 3.n

• Non Rotating, oscillating triaxsial ellipsoid

р _с ×10 ⁶ g/см ³	M ₀ /M _☉	R×10 ⁸ cm	I ₀ ×10 ⁵⁰ g.см ²	ω, s ⁻¹	H, km	ε×10-5	h _o	τ×10 ³ Gyear
2.403	0.5087	8.873	4.81	0.758	0.539	6.1	2.1 10-26	0.35
19.38	0.8854	5.903	3.70	0.794	0.137	2.3	3.4 10-26	2.59
157.7	1.1612	3.747	1.96	1.51	0.042	1.1	3.7 10-26	1.60
866.1	1.2538	2.492	0.934	1.99	0.017	0.69	3.4 10-26	2.92
2586	1.2582	1.888	0.538	0.967	0.010	0.52	3.1 10-26	160

May 30, 2006 LIGO-G060282-00-Z

Stochastic background level

- Background is not isotropic: Assuming a galactic distribution of white dwarfs to follow the disk population, we assign a density distribution of WDs: $\rho = \rho_0 e^{-r/R_0} e^{-z/h}$
- in galacto-centric cylindrical coordinates, with $R_0=2.5$ kpc and h=200pc

Conclusions

- Gravitational radiation spectrum near 1 hz is inhabited by Isolated White dwarfs
- Model 1.a $h_{av+} = 8.35 \ 10^{-27}$
- Model 1.m $h_{av+} = 7.94 \ 10^{-25}$
- Model 2.1 $h_{av+} = 2.01 \ 10^{-25}$
- Model 2.2 $h_{av+} = 1.62 \ 10^{-25}$
- Standard inflation gives $h \sim 10^{-27} 10^{-29}$ in this frequency range.

Equation of State for White Dwarfs $P = \frac{4}{3} \left(\frac{m_e}{m_n} \right)^4 K_n \left[x (2x^3 - 3)\sqrt{1 + x^2} + 3\ln\left(x + \sqrt{1 + x^2}\right) \right]$ $\rho = \frac{32}{3} \left(\frac{m_e}{m_n} \right)^3 \frac{K_n}{c^2} \frac{A}{Z} x^3$

• where
$$K_n = m_n^4 c^5 / 32\pi^2 \hbar^3$$
, $x = p_e / m_e c$

 $\frac{A}{-1} = 2 + 1.255 \cdot 10^{-2} x + 1.755 \cdot 10^{-5} x^2 + 1.376 \cdot 10^{-6} x^3$

May 30, 2006 LIGO-G060282-00-Z