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RadiationRadiation--PressurePressure andand ThermalThermal expansionexpansion

Kerr cavity: The intracavity power modifies the refraction index (then the optical
path) leading to changes in the intracavity power

Radiation-pressure driven cavity: The radiation pressure modifies the cavity length
⇒ the intracavity power changes ⇒ the 
radiation-pressure force varies

Photo-thermal expansion: Thermal expansion of the mirrors modifies the cavity
length ⇒ the intracavity power changes ⇒ the thermal
expansion varies

Nonlinear dependence of the intracavity path on the optical power

Multi-stability: cohexistence of stationary solutions



PhysicalPhysical MechanismMechanism
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1. The radiation pressure tends to increase the cavity lenght respect to
the cold cavity value⇒ the intracavity optical power increases

Optical injection on the long-wavelength side of the cavity resonance

2. The increased intracavity power slowly varies the temperature of  mirrors
⇒ heating induces a decrease of the cavity length through 

thermal expansion

Interplay between radiation pressure and photothermal effect



PhysicalPhysical ModelModel

Limit of small displacements⇒
Damped oscillator forced by the intracavity optical power

Radiation Pressure Effect

Photothermal Effect

Intracavity optical power

Single-pole approximation⇒
The temperature relaxes towards equilibrium at a rate ε and Lth∝ T

Simple case: Adiabatic approximation
⇒ The optical field instantaneously follows the cavity length 
variations

L(t) = Lrp(t) + Lth(t)We write the cavity lenght variations as



PhysicalPhysical modelmodel

Stationary solutions

The stability domains and dynamics depends on the type of steady states bifurcations

Depending on the parameters the system can have either one or three fixed points



BistabilityBistability

Analyzing the cubic equation for φ ⇒

On this curve two new fixed points (one stable and the other unstable)
are born in a saddle-node bifurcation
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Changes in the control parameters can produce abrupt jumps between the stable states
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BistabilityBistability: : NoiseNoise EffectsEffects

Noise Effects Mode-hopping between the two stable states

Resonance

Out of Resonance

Local stability region width ∝ 1 / Pin : critical for high power



Single Single solutionsolution: : HopfHopf BifurcationBifurcation

They admit nontrivial solutions K eΛt for eigenvalues Λ given by 

Single steady state solution:   Stability Analysis

Hopf Bifurcation: The steady state solution loses stability in correspondence of a 
critical value of δ0 (other parameter are fixed) and a finite frequency limit cycle 
starts to grow

Re Λ = 0   ;  Im Λ = i ν



HopfHopf BifurcationBifurcation BoundaryBoundary

Linear stability analysis is valid in the vicinity of the bifurcations
Far from the bifurcation ?

Q = 1, ε = 0.01, α=4 Pin , β=2.4 Pin

For sufficiently high power
the steady state solution loses
stability in correspondence of a 
critical value of δ0

Further incresing of δ0 leads to 
the “inverse” bifurcation

Frequency of the limit cycle

Boundary of the bifurcation



RelaxationRelaxation oscillationsoscillations

We consider ε = 0 and 1/Q » ε

By linearization we find that the stability
boundaries (F1,2) are given by Cφ = -1

φ(θ)

⇒ θ is constant 

Fast Evolution

ε small ⇒ separation of the system evolution in two time scales:  O(1)  and O(ε)

Fixed Points



RelaxationRelaxation oscillationsoscillations

By means of the time-scale change τ = ε t and
putting ε = 0 

G=0

Fixed point, p

If φ(θ) > p ⇒ dtθ < 0
If φ(θ) < p ⇒ dtθ > 0

Slow Evolution

Defines the branches of slow motion
(Slow manifold)

At the critical points F1,2 the system
istantaneously jumps

⇒ θ is slowly varying ( φ instantaneously follows θ variations)



NumericalNumerical ResultsResults

Q = 1 Temporal evolution of the φ variable and corresponding phase-portrait
as δ0 is varied

Far from resonance:
Stationary behaviour

In correspondence of δ0
c:

Quasi-harmonic Hopf limit
cycle

Further change of δ0:
Relaxation oscillations,
reverse sequence and a new
stable steady state is reached



NumericalNumerical ResultsResults

Q > 1
Temporal evolution of the φ variable (in the relaxation oscillations regime) and 
corresponding phase-portrait as Q is incresed 

Q= 5

Q=10

Q=20

Relaxation oscillations with damped oscillations when jumps between the stable
branches of the slow manifold occurs



NumericalNumerical ResultsResults

Between the self-oscillation regime and the stable state ⇒ Chaotic spiking 

The competition between Hopf-frequency
and damping frequency leads to a
period-doubling route to chaos

Q > 1 Three interacting time scales:
O(1), O(1/Q), O(ε)



StabilityStability DomainsDomains: : OscillatoryOscillatory behaviourbehaviour

Q » 1

Stability domains for Q=1000,
10000,100000

Stability domain in presence of the Hopf bifurcation

For high Q is critical



FutureFuture PerspectivesPerspectives

• Experiment on the interaction between radiation pressure and photothermal effect

• Time Delay Effects (the time taken for the field to adjust to its equilibrium value)
Model of servo-loop control
⇒ Extend the model to the case of gravitational wave interferometers 


