Stability and Dynamics in Fabry-Perot cavities due to combined photothermal and radiation-pressure effects

Francesco Marino^{1,4}, Maurizio De Rosa², Francesco Marin^{1,3,4}

- ¹ Istituto Nazionale di Fisica Nucleare, Firenze
- ² CNR-INOA, Sezione di Napoli
- ³ Dip. di Fisica, Università di Firenze
- ⁴ European Laboratory for Non-linear Spectroscopy (LENS), Firenze

Radiation-Pressure and Thermal expansion

Kerr cavity: The intracavity power modifies the refraction index (then the optical path) leading to changes in the intracavity power

Radiation-pressure driven cavity: The radiation pressure modifies the cavity length \Rightarrow the intracavity power changes \Rightarrow the radiation-pressure force varies

Photo-thermal expansion: Thermal expansion of the mirrors modifies the cavity length \Rightarrow the intracavity power changes \Rightarrow the thermal expansion varies

Multi-stability: cohexistence of stationary solutions

Physical Mechanism

Interplay between radiation pressure and photothermal effect

Optical injection on the long-wavelength side of the cavity resonance

- 1. The radiation pressure tends to increase the cavity lenght respect to the cold cavity value \Rightarrow the intracavity optical power increases
- 2. The increased intracavity power *slowly* varies the temperature of mirrors \Rightarrow heating induces a decrease of the cavity length through thermal expansion

Physical Model

We write the cavity lenght variations as

$$L(t) = L_{rp}(t) + L_{th}(t)$$

Radiation Pressure Effect Limit of small displacements⇒ Damped oscillator forced by the intracavity optical power

$$\ddot{L}_{rp} + \frac{\Omega}{Q}\dot{L}_{rp} + \Omega^{2}L_{rp} = \frac{2P_{c}}{mc} \qquad \ddot{\phi} + \frac{1}{Q}\dot{\phi} + \phi = \tilde{\alpha}P_{c} \qquad \tilde{\alpha} = 2/mc\Omega^{2}\Delta$$

Photothermal Effect Single-pole approximation \Rightarrow The temperature relayes towards

The temperature relaxes towards equilibrium at a rate ϵ and $L_{th} \propto T$

$$\dot{T} = -\varepsilon \left(T - T_0 - \frac{dT}{dP_c} P_c \right) \qquad \dot{L}_{th} = -\varepsilon \left(L_{th} + \left| \frac{dL_{th}}{dP_c} \right| P_c \right) \qquad \dot{\theta} = -\varepsilon \left(\theta + \widetilde{\beta} P_c \right)$$

Intracavity optical power

Simple case: Adiabatic approximation \Rightarrow The optical field instantaneously follows the cavity length variations

$$P_{c} = \frac{AP_{in}}{1 + \left\{\frac{4F}{\lambda}[L(t) + L_{0}]\right\}^{2}}$$

Physical model

$$\begin{split} \dot{\phi} &= v \,, \\ \dot{v} + \frac{1}{Q}v &= -\phi + \frac{\alpha}{1 + (\delta_0 + \phi + \theta)^2} \\ \dot{\theta} &= -\varepsilon \left[\theta + \frac{\beta}{1 + (\delta_0 + \phi + \theta)^2} \right]. \end{split}$$

$$\delta_0 = L_0 / \Delta$$
, $\alpha = \tilde{\alpha} A P_{in}$, $\beta = \tilde{\beta} A P_{in}$

The stability domains and dynamics depends on the type of steady states bifurcations

Stationary solutions

$$\upsilon_s = 0 \qquad -\phi_s [1 + (\delta_0 + \phi_s + \theta_s)^2] + \alpha = 0 \qquad \theta_s = -(\beta/\alpha)\phi_s$$

Depending on the parameters the system can have either one or three fixed points

Bistability

Analyzing the cubic equation for $\phi \Rightarrow$

$$\left(\frac{\delta_0^2 - 3}{9}\right)^3 = \left[\frac{(\alpha - \beta)}{2} + \frac{1}{3}\delta_0\left(1 + \frac{\delta_0^2}{9}\right)\right]^2$$

On this curve two new fixed points (one stable and the other unstable) are born in a saddle-node bifurcation

Changes in the control parameters can produce abrupt jumps between the stable states

Bistability: Noise Effects

Mode-hopping between the two stable states **Noise Effects** Resonance Detuning -2 Out of Resonance -3 -4 2×10⁵ 8×10⁵ 1×10⁶ 4×10⁵ 6×10⁵ 0 Time

Local stability region width $\propto 1 / P_{in}$: critical for high power

Single solution: Hopf Bifurcation

Single steady state solution: Stability Analysis

 $\delta \phi = \delta v$,

$$\dot{\delta}v = -\frac{1}{Q}\delta v - (1 + C\phi_s)\delta\phi - C\phi_s\delta\theta$$

 $\delta\theta = -\varepsilon [C\theta_s \delta\phi + (1 + C\theta_s) \delta\theta],$

$$C = 2(\delta_0 + \phi_s + \theta_s) / [1 + (\delta_0 + \phi_s + \theta_s)^2]$$

They admit nontrivial solutions $\mathbf{K} e^{\Lambda t}$ for eigenvalues Λ given by

$$\Lambda^3 + a_1\Lambda^2 + a_2\Lambda + a_3 = 0$$

$$a_1 = \varepsilon (C\theta_s + 1) + \frac{1}{Q} \qquad a_2 = 1 + C\phi_s + \frac{\varepsilon}{Q} (C\theta_s + 1) \qquad a_3 = \varepsilon (C\theta_s + C\phi_s + 1)$$

Re A = 0; Im A = i v

<u>Hopf Bifurcation</u>: The steady state solution loses stability in correspondence of a critical value of δ_0 (other parameter are fixed) and a finite frequency limit cycle starts to grow

Hopf Bifurcation Boundary

$$\nu^2 = a_2,$$

Frequency of the limit cycle

$$a_2a_1 - a_3 = 0$$
 Boundary of the bifurcation

For sufficiently high power the steady state solution loses stability in correspondence of a critical value of δ_0

Further increasing of δ_0 leads to the "inverse" bifurcation

Linear stability analysis is valid in the vicinity of the bifurcations Far from the bifurcation ?

 $Q = 1, \epsilon = 0.01, \alpha = 4 P_{in}, \beta = 2.4 P_{in}$

Relaxation oscillations

 ε small \Rightarrow separation of the system evolution in two time scales: O(1) and $O(\varepsilon)$ We consider $\varepsilon = 0$ and $1/Q \gg \varepsilon \implies \theta$ is constant

Fast Evolution

By linearization we find that the stability boundaries ($F_{1,2}$) are given by $C\phi = -1$

Fixed Points

Relaxation oscillations

 $F(\boldsymbol{\phi},\boldsymbol{\theta})=0$

Slow Evolution $\Rightarrow \theta$ is slowly varying (ϕ instantaneously follows θ variations)

By means of the time-scale change $\tau = \varepsilon$ t and putting $\varepsilon = 0$

$$\dot{\theta} = -\left[\theta + \frac{\beta}{1 + (\delta_0 + \phi + \theta)^2}\right] \equiv G(\phi, \theta)$$

 $1+(\delta_0+\phi+\theta)^2$

$$\dot{\theta} = -\left[\theta + \frac{\beta}{\alpha}\phi(\theta)\right]$$

Defines the branches of slow motion (Slow manifold)

 $\begin{array}{l} If \ \varphi(\theta) \ > p \Longrightarrow d_t \theta < 0 \\ If \ \varphi(\theta) \ < p \Longrightarrow d_t \theta > 0 \end{array}$

At the critical points $F_{1,2}$ the system istantaneously jumps

Numerical Results

Q = 1

Temporal evolution of the ϕ variable and corresponding phase-portrait as δ_0 is varied

Far from resonance: Stationary behaviour

In correspondence of δ_0^{c} : Quasi-harmonic Hopf limit cycle

Further change of δ_0 : Relaxation oscillations, reverse sequence and a new stable steady state is reached

Numerical Results

O >

Temporal evolution of the ϕ variable (in the relaxation oscillations regime) and corresponding phase-portrait as Q is increased

Relaxation oscillations with damped oscillations when jumps between the stable branches of the slow manifold occurs

Numerical Results

Q > 1 Three interacting time scales: $O(1), O(1/Q), O(\varepsilon)$

The competition between Hopf-frequency and damping frequency leads to a period-doubling route to chaos

Between the self-oscillation regime and the stable state \Rightarrow Chaotic spiking

Stability Domains: Oscillatory behaviour

Stability domain in presence of the Hopf bifurcation

Future Perspectives

• Experiment on the interaction between radiation pressure and photothermal effect

 Time Delay Effects (the time taken for the field to adjust to its equilibrium value) Model of servo-loop control
⇒ Extend the model to the case of gravitational wave interferometers