The Promise and Challenge of Gravitational Experiments in Space

GP-B and Lessons for LISA Technology

Sasha Buchman Stanford University Elba, May 2006 -G060315-00-Z

• Complex physics experiment do work in space, GP-B

LISA and GP-B have significant technology overlap

LISA requires for success

- Simplified more robust design
- Use of modern technology
- Innovative operations methods

George Bernard Shaw Toast at a banquet honoring Albert Einstein 1930

George Bernard Shaw 1930

Why Space?

Seismic Noise <10Hz</p>

- Low gravity
- Long Baselines
- Long Measurement Times

Launch Environment Cost and Duration Reliability; One Shot

Communications

STANFORD LISA the Laser Interferometer Space Antenna

STANFORD THE Relativity Mission Concept

GP-B Space Vehicle

STANFORD GP-B Launch; April 20, 2004

GP-B Timeline

I. GP-B Launch:

- Initial orbit checkout 4 months
- Plan was 40-60 days

II. Science Mission Start: Aug. 20, 2004

- Science Mission 11.5 months
- Data segments

III. Science Mission End: Aug. 5, 2005

Post Mission Calibrations – 1.5 months

IV. Helium Depleted: Sep. 29, 2005

ALL MAJOR SYSTEM WORKED WELL

Surprises occurred at all stages

V. Data Release:

Apr. 30, 2007

Data Ground Analysis

STAN

- Anticipated completion early 2007
- ~ 1.5 Terabytes of data
 - ~ 700 sensors
 - ~ 10,000 monitors
 - Nominal data rate: 0.1-10 Hz
 - Snapshots: 220-2200 Hz
- > 99.1% data recovery

Data release on COBE/WMAP model

- Drift data embargoed until analysis is complete
- Data released to public coinciding with publication of refereed papers

GP-B Drag-Free & Attitude Control: A 9 degree of freedom problem

Satellite actively controls 9 interacting DOF:

3 in attitude of spacecraft to track guide star & maintain roll phase
3 in translation: drag-free about geometric center of gyro housing
3 in translation of gyroscope with respect to housing
Dynamics coupling is complex

GP-B, STEP, LISA: INERTIAL REFERENCES 3 Ultra-Untypical Space Missions

What is different?

- Sophisticated drag-free & attitude control system
- Payload is space vehicle sensor in a single integrated unit

Human & management implications

- Integrated engineering/physics team for whole development phase
- New approaches to requirement verification
- Co-located operations/science team essential for initial orbit set-up

Telescopes	GP-B	STEP	LPF	LISA
3 DOF Precision Control	9 DOF Precision Control	18 DOF Precision Control	18 DOF Precision Control	57 DOF Precision Control

Limited comm links for non LEO missions present serious challenges

GP-B Technical Lessons Learned

LISA Technology

Data Analysis

Ground Simulations

Operations and simulation

- Interacting multiple degrees of freedom and cross-coupling complicate operation concepts.
- Significant data rates are to be expected for LISA
- High fidelity simulation tools are needed to support operations planning and anomaly resolution for LISA.
- LISA system must be designed for realistic operations.

Surface physics of coatings

Probable patch effects observed on GP-B.

 Studies of spatial and temporal variations as well as impact of contamination are needed for LISA.

Charge management

- Charge management was essential to establish GP-B operation.
- GP-B demonstrated concept and successful operations.
- A larger dynamic range is needed for LISA.

Charge management

Surface Coatings

GP-B Communications, Commands, and Telemetry

GP-B at 12.9 mHz

TDRSS Network

- 20-40 minutes/contact
- ~12 contacts per day
- 1-2 Kbits/sec data rate

Ground Stations

- 10-12 minutes/contact
- 4 contacts per day
- 32 Kbits/sec data rate
- 1.5 Tbytes/year

TDRSS Satellite

GP-B Satellite

Ground Station

• LIGO/VIRGO/GEO600

- ~ 50 1000 Hz
- ~ 50Tbytes/year
- LISA
 - 0.03mHz to 1 Hz
 - Deep Space Network

The Instruments: GPB and LISA

12.9 mHz

- 4 Gyroscopes
- 1 Telescope
- 1 Spacecraft
- Thermally Controlled
- 4 SQUIDs
- •
- 9 DOF Control

0.03 mHz - 1 Hz

- 6 GRS (3)
- 6 Telescopes
- 3 Spacecraft
- Thermally Controlled
- •
- 3 Interferometers
- 57 DOF Control (30)

STANFORD Initial Orbit Checkout

- Mission planning
 - Planned 6 weeks lasted 4 months
- The unexpected (> 100 anomalies)
 - Thruster failures
 - Rad induced MBEs (10 × expected rate)
 - Computer reboots
 - Forward antenna degraded
 - Star sensor software difficulties
- Spacecraft commanding
 - <u>10,000</u> commands to spacecraft during IOC
 - LIGO/VIRGO/GEO600
 - Commissioning ~ 12 month
 - LISA
 - Lower science band than LVG
 - Slower communications

Use During Mission Development Phase

Page 19

Simulator Features

Hardware-in-the-loop verification

- Fully integrated sensor-control-actuator simulations, operating across payload/spacecraft interface
- Modular architecture

Realistic simulation for ops training

- Common development environment
- High fidelity spacecraft bus and CPU
- Integrated MOC

Facility Status

Fully operational system

- Hardware/software integrated
- Versatile interface for new mission development
- Incremental upgrade capability
- LISA Pathfinder drag-free control group ZARM Bremen, Germany, secured EU funding for collaboration
- Stanford submitting proposal to ROSES 2005 AISR AO for further development

Recommendations

- Extensive ground simulator with hardware in the loop
- Full instrumentation of all systems
- Comprehensive periodical instrument calibrations
- Maximum instrumentation data to ground
- Fast data snapshots to ground
- Critical data processing on the ground

The Patch Effect

- The patch effect refers to spatial variations in surface potential
- It can arise due to polycrystalline structure
- It can be affected by presence of contaminants

Patch fields are present on test mass and housing wall surfaces

- Interactions between patch fields cause forces that change with position, both in x and z directions
- Temporal variations in surface potential produce acceleration, in conjunction with
 - an ambient DC voltage, or
 - net free charge on the test mass

Kelvin Probe

- The Kelvin probe measures contact potential difference (Vc) between a conducting specimen and a vibrating probe tip
- It is a non-contact, non-destructive vibrating capacitor device
- A backing potential Vb electrically connects specimen and probe tip
- When Vb = -Vc, the circuit is balanced
- Null condition can be detected accurately
- The Goddard probe is a custom-built UHV system with scanning capability

View of probe (diameter 3mm) sitting above samples

Kelvin's original apparatus

Materials Studied

- Test mass:
 - Au/Pt with gold coating
- Housing walls:
 - substrate: beryllia, alumina or titanium (for inserts)
 - coatings: gold, diamond-like carbon (DLC), indium tin oxide, titanium carbide

+ various underlying layers chosen for adhesion, conductivity and smoothness

Note: many of the samples were precision coated in-house at Stanford

Example of samples ready for measurement in the Kelvin probe

Clockwise from top left: AuNb on alumina, DLC/Ti/Au/Nb on beryllia, DLC/Ti/Au/Ti on titanium, DLC/Ti/Au/Ti on alumina

Page 25

Examples of Spatial Scans

Gold-niobium on alumina (p-to-p 13 mV)

Indium tin oxide on titanium (p-to-p 6 mV)

Diamond-like carbon on beryllia (p-to-p 22 mV)

Titanium carbide on titanium (p-to-p 6 mV)

Contact potential difference in volts over 10 mm by 10 mm area (400 data points). Page 26

STANFORD Time variations of contact potential differences

Raw data for first 2400 seconds of graph top right

Amplitude spectral density of data shown at bottom left

General Recommendations

The patch effect is a noise source which is not well characterized. An integrated effort is required to:

- > achieve reliable reproducible coatings with acceptable properties
- establish magnitude of spatial and temporal effects
- characterize the properties of the patch effects under flight-like environmental conditions: pressure, temperature, presence of contaminants..
- relate patch effects to noise requirements:
 update noise tree analysis and reassess parameters/requirements

Gyro #4 Analog Backup Levitation and De-levitation

Title, Snapshot Position (Electrode Frame), Vehicle Time = 136092929.3 20 В 15 C 10 Position (µm) 5 -5 -10 -15 2 8 10 12 Π Δ 6 Elapsed Time (s)

Expected de-levitation time at 10⁻⁶ m/s² is 10 s

Gyroscope charge on levitation is 200 - 400 mV

STANFORD

UNIVERSITY

Requires discharge to < 10 mV

Page 29

Charge Management

- Rotor charge controlled via UV excited electrons
- Charge rates ~ 0.1 mV/day
- Continuous measurement at the 0.1 mV level
- Control requirement: 15 mV

Discharge of Gyro1 following HV Spin Axis Alignment 450mV 450 **Discharge of Gyro1** 400 350 70mV/hour Gyro1 Charge (mV 300 discharge 250200 150 100mV 100 0 mV ----221.2 221.4 221.6 221.8 222 222.2 222.4222.6222.8 Day of year, 2004

UV Electrode

Page 30

UV Lamp Assembly

Charge controlled to < 5 mV

STANFORD UNIVERSITY

Gyro Charge for Science Mission

Measured Gyro Charge (mV) vs Day of Year 2004

Solar Flare 720

Charging rates to day 390				
	Average Charging Rate	Sun Spot 720		
	mV/day	mV		
Gyro 1	0.098+/-0.003	0.63+/-0.05		
Gyro 2	0.114+/-0.003	0.74+/-0.05		
Gyro 4	0.152+/-0.003	1.15+/-0.05		

UV Lamps Lifetime

Rate (DN/min/IM count)

-4.0E-03

-5.0E-03

-6.0E-03

0

20

40

UV Lamp A Intensity vs Operating Hours

0.0E+00 -1.0E-03 -2.0E-03 -3.0E-03

60

time (hours)

80

100

Normalized Discharge Rates vs Time - LAMP B, -3V Bias

♦ G1 ● G2

∆ G3 ∎ G4

140

120

LED Deep UV Source for Charge Management

UV LED with Fiber Output Spectral Distribution (4-15-2005)

STANFORD

Peak wavelength: 257.2 nm, comparable to Hg line 254 nm

FWHM: 12.5 nm, good photoemission for Au coatings

Total UV power: 0.144 mW, sufficient for charge management

Page 34

STANFORD UNIVERSITY

AC Charge Management

No need for dedicated DC bias
 AC electrical field can be used for control
 UV LED modulation is high frequency

UV modulation is phased in *positive* AC ¹/₂ cycle:

Photoelectrons to housing electrodes

UV modulation is phased in *negative* AC ¹/₂ Cycle:

Photoelectrons to test mass

Page 35

STANFORAC Charge Management Shows Promising Characteristics

UV LED and bias voltage modulated at 10 kHz

Recommendations for UV Charge Management

> Use UV LED as the UV source

- Light weight
- > Low electrical power
- Compact, robust
- Fast modulation

stane Advanced LISA Concepts – Stanford (2004)

Autonomous Gravitational Sensor

- Separation from S/C Interferometry
- Measure PM position in housing
- Use housing for interferometry
- Single proof mass (PM) per S/C
- Non constraint GRS
- Large gap

GRS with double sided grating for PM and interferometer reference

One reflective dielectric grating functions as both beam splitter and reference:

No additional reference surface needed.
No dn/dT problems

E^{STANFORD} UNIVE Multiple Mirror Scheme for Telescope

- "The trend" (Ternary design was for next Hubble)
- Move lighter parts only
- Optical bench does not move
- Assign coarse and fine adjustments to different mirrors (numbers are OK)

Conclusions

Complex physics experiment do work in space, GP-B

• LISA and GP-B have significant technology overlap

• LISA requires for success

- Simplified more robust design
- Use of modern technology
- Innovative operations methods