

Virgo: Plans for the next future

Virgo+

Michele Punturo INFN Perugia On behalf of the Virgo collaboration

27/05/2006 -2/06/2006 GWADW-VESF Meeting LIGO-G060332-00-Z

Sensitivity & Detection

Sensitivity improvement

- The nominal Virgo sensitivity is dominated by
 - the shot noise, at high frequency
 - the pendulum thermal noise at low frequency

High Power Lasers Light

- Reduction of the shot noise passes through the increase of the power of the light circulating in the Fabry-Perot Cavities
 - In a shot-noise limited detector the sensitivity decreases as 1
 - Currently the laser is a 20W, supplied by the Laser Zentrum Hannover, based on a Nd:YVO4 rod, end pumped by fibre-coupled diode lasers
 - High power laser is necessary to inject many Watts in the cavities
 - Current technology, developed by the GEO-Hannover group+LZH, permits to have hundred Watts CW lasers
 - Many technical problems on the injection and central optics limit the possible increase of power, with a reduced impact on the shut-down period
 - 50 W seems a good compromise between the noise improvement and the technical difficulties

Nd:YVO4 for 50W Amplifier

- 50W laser amplifier under development between LZH and Virgo:
- Four-stage end-pumped Nd:YVO4 Each stage pumped by 45 W laser diode
- Each diode indiv temp controlled Each 2diodes connected in series to 1 current driver
- Diodes current controlled

• Possibility to replace the current master laser with a fiber laser

Possible laser system

- Crystal pumping module

50/2 W laser effect

Mirror Losses New Model

- The Virgo nominal sensitivity is realized adopting a constant in frequency model for the mirror Brownian noise
- S.D.Penn et al. shown that this corresponds to an over-estimation of that noise and they proposed a model for Suprasil 312:

$$\phi\left(f,\frac{S}{V}\right) = C_1 \left(\frac{V}{S}\right)^{-1} + C_2 \left(\frac{f}{1Hz}\right)^{C_3} + C_4 \phi_{th-elastic} \approx 7.12 \times 10^{-9} \frac{S}{V} + 4.63 \times 10^{-12} f^{0.813}$$

- But the current Virgo Input Mirrors are made in Suprasil 311-SV very similar to Suprasil-312
 - Reducing the other noises we should trave an "advanced" performance level

FIG. 2: Suprasil 312 mechanical loss data with best fit surface.

((@))

Replacement of the Virgo mirrors

- Virgo mirror are in a "mixed" configuration
 - Input mirrors in Suprasil SV-311 (low losses)
 - End mirrors in Herasil (High losses, no frequency dependence (Numata et al.))
- Replacing all the mirrors we could
 - Use low dissipation material for all the mirrors
 - Adopt better performance coatings
 - Install monolithic fused silica suspension

Mirror thermal noise evaluation

 R&D activities in LIGO with the support of the LMA-Virgo group demonstrated that it is possible to decrease the mechanical dissipation of the coatings introducing TiO₂ dopants in the Ta₂O₅/SiO₂ layers

Complete the upgrade

- In effect, the previous improvement is "incomplete" and maybe "fictitious":
 - To substitute four mirrors we need to invest a lot of money, a large effort and a long shutdown period
 - Large cost of the substrates
 - Large cost of the coatings
 - At least one month of preparatory work for each mirror before to shut-down the ITF and 3 weeks to install each payload
 - Presence of a large excess loss due to the friction of the suspension wires on the mirror lateral faces.
 - Steel wire suspension is not the selected technology for the 2nd generation ("advanced") detectors
 - Could we anticipate the upgrade of the suspension?
 - Virgo have already a second generation seismic filtering system!

Monolithic fused silica suspension

- Thanks to the well known low mechanical dissipation of the fused silica, a similar monolithic suspension promises an excellent performance in terms of thermal noise
- Multi-year R&D activity performed in Virgo
- Collaboration with the GEO-Glasgow group
- Large engineering effort now in Virgo to realize a FS monolithic last stage
 - Two fiber production machines available in Cascina
 - H2-O2 flames "standard" machine completely automated
 - New CO2 laser machine
 ✓
 - Well defined planning available
 - Realization of a test payload having
 - Stainless steel marionette
 - Dielectric reference mass
 - Monolithic fused silica suspension fibers attached to the mirror through silicate bonding
 - Dummy mirror \checkmark
 - Full Virgo local control system
 - » Magnet-Coil actuation system
 - » Digital (ADC-DSP-DAC) control system
 - » Optical lever monitoring

Fiber production Facilities

(((0)))

CO2 laser Machine

Virgo+ performances 1/2

100

Virgo+ performances 2/2

What is necessary?

- Physicists are fascinated by fundamental noises and frustrated by technical ones
 - Control noises are currently limiting the low frequency sensitivity of all the GW ITFs in the World
 - In particular, the required low frequency performances of Virgo and furthermore of Virgo+ are a challenging stress test of:
 - Actuation electronics
 - New coil drivers with lower noise under realization
 - New DACs with a larger dynamic range under study
 - DAQ electronics
 - New ADC with higher sampling frequency and number of bits under study
 - "Filtering" electronics
 - New generation DSP boards with high computational power under realization (to fulfill the increasing request of CPU power)
 - High power laser requires
 - Upgrade of some components in our input and detection optics
 - Thermal compensation devices
 - Absorption in the input mirror is suppressed by the good quality of our mirror substrates
 - » Nevertheless a thermal compensation system is under study (LIGO+GEO , experience)

Conclusions

- In the next months Virgo will approach his final sensitivity
- A series of well defined upgrades will permit to increase the detector performances with a relatively small impact on the operational time:
 - Virgo+ is currently an engineering effort rather than a R&D activity
- A huge R&D activity is, instead, necessary to arrive to the Advanced Virgo design

