SENSITIVITY IMPROVEMENT AND GRAVITATIONAL WAVE DETECTION

Rainer Weiss, MIT NSF Advanced LIGO Review May 31, 2006

LIGO-G060333-00-M

Outline

- Evolution of the initial LIGO sensitivity
- Noise in the initial LIGO
- Program for improvements in sensitivity and duty cycle
- Enhanced initial LIGO
- Advanced LIGO

r 1

• Evolution of the capability for detection

FRINGE SENSING

6 c

. .

Quantum Noise in the Michelson Interferometer

==

PENDULUM THERMAL NOISE

. .

Doppler (gas) dampin g

Phase noise from molecular scattering

• •

Program of improvements

Major steps between initial and advanced LIGO

- Increase laser input power 10 to 180 watts in stages
- Incorporation of an output mode cleaner
- Output optics and electro-optics chain in vacuum
- DC (carrier offset) "modulation" technique
- Reduction in thermal noise
 - Steel wire to fused quartz ribbon suspension elements
 - Lower mechanical dissipation optical coatings
 - Larger test masses : 10 kg to 40 kg
- Improved seismic isolation extend sensitivity to 15Hz
- Tunable dual recycling interferometer configuration
- Quantum limited operation over significant band

Considerations

- Advantages for the science from phasing
 - Operations now in regime where rate of events ~ $(1/\text{sensitivity})^3$
 - Reasonable probability of a detection
 - Maintain the data analysis effort
- Advantages for the technical program from phasing
 - Early trials

1 .

- Reduction in installation and commissioning time

Classes of sources

- Compact binary inspiral: template search
 - BH/BH
 - NS/NS and BH/NS
- Low duty cycle transients: wavelets,T/f clusters
 - Supernova
 - BH normal modes
 - Unknown types of sources
- Periodic CW sources
 - Pulsars
 - Low mass x-ray binaries (quasi periodic)
- Stochastic background
 - Foreground sources : gravitational wave radiometry
 - Cosmological isotropic background

Binary Coalescence Sources & Science: Binary Neutron Stars: LIGO Range

LIG

LIGOBinary Coalescence Sources & Science: Binary Neutron Stars: AdLIGO Range

LIGO Search for binary systems

- Search for double or triple coincident "triggers"
- Estimate false alarm probability of resulting candidates: detection?

John Rowe, CSIRO

Compare with expected efficiency of detection and surveyed galaxies: upper limit

B. Abbott et al. (LIGO Scientific Collaboration):

- S1: Analysis of LIGO data for gravitational waves from binary neutron stars, Phys. Rev. D 69, 122001 (2004)
- S2: Search for gravitational waves from primordial black hole binary coalescences in the galactic halo, Phys. Rev. D 72, 082002 (2005)
- S2: Search for gravitational waves from galactic and extra-galactic binary neutron stars, Phys. Rev. D 72, 082001 (2005)
- S2: Search for gravitational waves from binary black hole inspirals in LIGO data, Phys. Rev. D 73, 062001 (2006)
- S2: Joint Search for Gravitational Waves from Inspiralling Neutron Star Binaries in LIGO and TAMA300 data (LIGO, TAMA collaborations), PRD, in press
- S3: finished searched for BNS, BBH, PBBH: no detection
- S4, S5: searches in progress.

G060185-00-Z

Progress in Upper Limits

LIGO-G060178-01-Z Sutton APS Mtg 2006.04.22

12

h₀ Results

LIGO

- Spin-down upper limit • calculated with intrinsic spindown value if available i.e. corrected for Shklovskii transverse velocity effect
- Closest to spin-down upper • limit
 - Crab pulsar ~ 2.1 ____ times greater than spin-down ($f_{gw} = 59.6$ Hz, dist = 2.0 kpc)
 - $h_0 = 3.0 \times 10^{-24},$ $\epsilon = 1.6 \times 10^{-3}$
 - Assumes I = 10^{38} kgm²
 - Sensitivity curves use:

 $= 10.8\sqrt{S(f)}.$

•

S(f)

G

6 0 0

S5 Results – 95% upper limits

h ₀	Pulsars	Lowest h_0 upper limit: PSR J1603-7202 (f_{gw} = 134.8 Hz, r = 1.6kpc) h_0 = 1.6x10 ⁻²⁵ Lowest ellipticity upper limit: PSR J2124-3358 (f_{gw} = 405.6Hz, r = 0.25kpc) ϵ = 4.0x10 ⁻⁷	
$1 \times 10^{-25} < h_0 < 5 \times 10^{-25}$	44		
$5x10^{-25} < h_0 < 1x10^{-24}$	24		
$h_0 > 1x10^{-24}$	5		
All values assume I = 10^{38} kgm ² and no error on distance		Ellipticity	Pulsars
		ε < 1x10 ⁻⁶	6
		$1 \times 10^{-6} < \varepsilon < 5 \times 10^{-6}$	28
$\varepsilon = 0.237 \frac{h_0}{10^{-24}} \frac{r}{11} \frac{1 \text{Hz}^2}{2} \frac{10^{38} \text{kgm}^2}{r}$		$5x10^{-6} < \varepsilon < 1x10^{-5}$	13
10^{-1} lkpc v^{-1}	I_{zz}	ε > 1x10 ⁻⁵	26
APS meeting, Dallas 22/04/06			6

Predictions and Limits

-> w