Robust detection of GW chirps

Eric Chassande-Mottin

CNRS, Observatoire de la Côte d'Azur (Nice) and AstroParticule et Cosmologie (Paris) FRANCE

with Archana Pai Albert Einstein Institute (Golm) GERMANY

May 31, 2006

Chassande-Mottin Robust detection of GW chirps

Outline

- 1 GW chirps, an advanced detector perspective
- Methodologies for chirp detection
 Viewpoint 1: Time-frequency heuristics
 Viewpoint 2: Detection theory and optimality criterion
- 3 Conciliate both viewpoints Chirplet chains, Phys. Rev. D73, 042003, 2006

イロト イポト イヨト イヨト

 $GW\ chirps,\ an\ advanced\ detector\ perspective$

- (1st?) detection plausible with "verification" sources go beyond: look for unexpected event, explore!
- consequence: our analysis pipelines should include algorithms which do not rely on precise model (like burst searches today)

イロト イポト イヨト イヨト

 $GW\ chirps,\ an\ advanced\ detector\ perspective$

- (1st?) detection plausible with "verification" sources **go beyond**: look for unexpected event, **explore!**
- consequence: our analysis pipelines should include algorithms which do not rely on precise model (like burst searches today)
- GW = system "radiates away its asymmetries" if orbiting → quasi-periodic waves GW chirps: s(t) ≡ Acos(φ(t) + φ₀), {A, φ₀ unknown} typical duration T ~ few sec in detector band φ(t) is partially/totally unknown restrict to realistic: impose |f(t)| ≤ F' and |f(t)| ≤ F"

イロト イポト イラト イラト 一日

Viewpoint 1: Time-frequency heuristics Viewpoint 2: Detection theory and optimality criterion

イロト イポト イヨト イヨト

Viewpoint 1: Chirps in the time-frequency plane (1)

heuristic: chirp = "filiform" pattern in time-frequency plane

Chassande-Mottin Robust detection of GW chirps

Viewpoint 1: Time-frequency heuristics Viewpoint 2: Detection theory and optimality criterion

Viewpoint 1: Two degrees of freedom (2)

which TF representation? spectrogram, wavelets, Wigner-Ville, Cohen, reassignment, etc.

which pattern search? Hough, "crazy climbers", "snakes", road tracker in satellite images, etc.

SP, Lh=32, Nf=512, lin. scale, imagesc, Threshold=2%

イロト イポト イヨト イヨト

Viewpoint 1: Multiple approaches...(3)

- Morvidone & Torrésani, IJWMIP, 2003
- Anderson & Balasubramanian, Phys. Rev. D, grqc/9905023
- Carmona, Hwang & Torrésani, IEEE SP, 1998
- Chassande-Mottin & Flandrin, ACHA, 1998
- Pinto et al., Proc. of GWDAW, 1997
- Innocent & Torrésani, ACHA, 1997

イロト イポト イラト イラト 一日

Viewpoint 2: Detection theory and chirps (1)

recall, chirp: $s(t) = A\cos(\phi(t) + \varphi_0)$ in white Gaussian noise sampling : $s_k = s(kt_s)$ for $k = 0 \dots N - 1$

likelihood ratio:
$$\log(\lambda; A, \varphi_0, \phi) = \log \frac{\mathbb{P}(x_k | H_1)}{\mathbb{P}(x_k | H_0)}$$

replace A and φ_0 by their max. likelihood estimates

$$\ell(x,\phi) = \log(\lambda_{\max}) \propto \left|\sum_{k=0}^{N-1} x_k \exp i\phi_k\right|^2 \leq \eta$$

quadrature matched filtering

Viewpoint 2: When chirp phase is not known...(2)

- if ϕ is not known, proceed with same scheme: find phase which maximizes $\ell(x,\phi)$
- analytical maximization impossible → numerical bank of matched filters, *ex:* inspirals

Viewpoint 2: When chirp phase is not known...(2)

- if ϕ is not known, proceed with same scheme: find phase which maximizes $\ell(x,\phi)$
- analytical maximization impossible → numerical bank of matched filters, *ex:* inspirals
- sampling of the set of possible phases: template grids
- griding must be sufficiently tight, how to be sure?

Viewpoint 2: When chirp phase is not known...(2)

- if ϕ is not known, proceed with same scheme: find phase which maximizes $\ell(x,\phi)$
- analytical maximization impossible → numerical bank of matched filters, *ex:* inspirals
- sampling of the set of possible phases: template grids
- griding must be sufficiently tight, how to be sure?
 we "receive" x_k=Acos(φ_k + φ₀) and we "search" with template φ^{*}_k

distance:
$$\Delta \ell(\phi, \phi^*) \equiv \frac{\ell(s, \phi) - \ell(s, \phi^*)}{\ell(s, \phi)}$$

the distance between two grid nodes should be small

3

```
Conciliate viewpoints?
```

Does this method apply in general?

- 1 can we build a bank of matched filters for GW chirps?
- 2 with which templates?

Chirplet chains, Phys. Rev. D73, 042003, 2006

イロト イポト イヨト イヨト

Chirplet chains (CC), Phys. Rev. D73, 042003

《曰》 《圖》 《臣》 《臣》

3

CCs form a tight template grid

if N'_r and N''_r are large enough, for all smooth chirp ϕ , there exists a CC ϕ^* such that

$$\Delta \ell(\phi, \phi^*) \lesssim C \left[\frac{1}{2} \left(\frac{\sqrt{3F''T^3}}{N_t} \right)^2 + \frac{1}{2} \left(\frac{2N}{N_f} \right) \right]^2$$

Chirplet chains, Phys. Rev. D73, 042003, 2006

<ロト < 団ト < 臣ト < 臣ト

590

3

CCs form a tight template grid

Chassande-Mottin Robust detection of GW chirps

Chirplet chains, Phys. Rev. D73, 042003, 2006

3

CCs form a tight template grid

Chassande-Mottin Robust detection of GW chirps

CCs form a tight template grid

if N'_r and N''_r are large enough, for all smooth chirp ϕ , there exists a CC ϕ^* such that

$$\Delta \ell(\phi, \phi^*) \lesssim C \left[\frac{1}{2} \left(\frac{\sqrt{3F''T^3}}{N_t} \right)^2 + \frac{1}{2} \left(\frac{2N}{N_f} \right) \right]^2$$

CC grid is tight!

... but too large to be searched exhaustively we want $\max_{all CCs} \{\ell\}$ (combinat. count: number of CCs is exponential. growing with N_t)

Chirplet chains, Phys. Rev. D73, 042003, 2006

best CC: near optimal search

maps to time-frequency: discrete Wigner-Ville

Moyal:
$$\ell = \frac{1}{2N} \sum_{n} \sum_{m} W_x(n,m) W_e(n,m)$$

approximation: W_e is almost Dirac $\approx \delta(m - m_n^{(cc)})$

path integral:
$$\ell \approx \sum_{n} W_{x}(n, m_{n}^{(cc)})$$

 $\max\{\ell\} =$ **longest path** prob.

dynamic programming solves this in polynomial time

which TFR ? DWV, which pattern search? largest path int. + dyn. prog.

Chirplet chains, Phys. Rev. D73, 042003, 2006

best CC: near optimal search

maps to time-frequency: discrete Wigner-Ville

Moyal:
$$\ell = \frac{1}{2N} \sum_{n} \sum_{m} W_x(n,m) W_e(n,m)$$

approximation: W_e is almost Dirac $\approx \delta(m - m_n^{(cc)})$

path integral:
$$\ell \approx \sum_{n} W_{x}(n, m_{n}^{(cc)})$$

 $\max\{\ell\} =$ **longest path** prob.

dynamic programming solves this in polynomial time

which TFR ? DWV, which pattern search? largest path int. + dyn. prog.

Chirplet chains, Phys. Rev. D73, 042003, 2006

Chassande-Mottin

Robust detection of GW chirps

Chirplet chains, Phys. Rev. D73, 042003, 2006

best CC: performance, ROCs

ROC: detection prob. vs false alarm

"clairvoyant" observer knows incident chirp *a priori*

the SNR of "clairvoyant" observer is set such that ROC fits the other.

→ - Ξ →

reduction factor in the sight distance wrt "clairvoyant" ≈ 2.6

Chassande-Mottin Robust

Robust detection of GW chirps

I = 1 = 1

Chirplet chains, Phys. Rev. D73, 042003, 2006

Future plans: extension to multiple GW antennas

extend CC search to quasi-coherent analysis of GW network data open a post-doctoral position at APC (Paris) with support of VESF

APC is a new institute in Paris devoted to astroparticle physics including GWs

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

very soon, announcement on http://www.apc.univ-paris7.fr to know more/apply, contact: ecm@obs-nice.fr