

The commissioning of the Virgo interferometer

H. Heitmann

Observatoire de la Côte d'Azur, Nice

for the VIRGO collaboration

- Edindamising
- Ugads
- Rantomisirigativiis
- Otok

H. Heitmann

Strofoomisivightieshthm

Commissioning sensitivity evolution

H. Heitmann

Problems with configuration up to C7

Figsdetblakatkiginneldanr

=> Operate with reduced power (10%)

Nononitic, arvelpoverseydigning

Resonances => Control problems Shift sensitivity => alignment drifts

- New power recycling mirror
- New injection bench

VIRGO layout

Roverseydigniter

Old power recycling mirror

H. Heitmann

8

Malimir

No more internal resonances in the control band !!

Htsufacs

- => no more lens effect (no more part of input telescope)
- => larger beam coming out of injection bench
- => parabolic telescope needed on IB

H. Heitmann

hjainberh

Fringes in the interferometer

Manapienets

- Faraday isolator
- Parabolic output telescope
- Thinner suspension wires more suitable resoance frequencies

New injection bench (OptoCad design)

New injection bench (above)

Perhis

installed aligned controlled

Ram

output power 7 W (10x C7) matching: coupling into arm cavities 95-97%

Sneccet comisivizativities

- The variable finesse locking technique
- Mode cleaner mirror radiation pressure
- Suspension improvements
- New injection system autoalignment

Tevaillefinsselokigtedripe

Milderemiku: rahimpesue

Mode cleaner mirror: radiation pressure effect

MC locked full power MC locked 60% power MC unlocked Θ_x : 2.13 -> 1.97 Hz Θ_y : 1.27 -> 2.0 Hz

Mode position changes with mirror alignment

- \Rightarrow extra torque
- \Rightarrow resonance frequency change

Problem:

- Autoalignment loops became unstable
- Corrector adaptation was needed

mirror dimensions: 30x80 mm 360 grams

 $\boldsymbol{\mathcal{I}}$

Retningspesininpoenets

Suspension: recent problems and solutions

H. Heitmann

Nwijainsystematolignet

Olystm

Idea: if IB is rigid, no misalignments (turned out not to be true) IB under local control 7 6.5 2004 03/06 10/06 17/06 24/06

Mode cleaner transmitted power fluctuations

Nevşsten

Beam aligned on fixed mechanical reference (external bench) Mode cleaner fully aligned on beam

Autocentering of beam onto MC end mirror

Filesharent

Beam aligned on 3 km target

H. Heitmann

Old injection system autoalignment layout

New injection system autoalignment layout

Present status

Fibbigofitefeorter

1-2 hours locking periods or 5 minutes ...

Tanaleffects

Affect recycling cavity stability (modulation sidebands drop)

30-50Houstevents(skeephs)

Locking stability problems

Nilignetseniivity?

Hasten full autoalignment (5/10 d.o.f. OK)

Next steps

hppeseniiviy

Low frequency control noise (alignment) modulation frequency tuning (servo) Medium frequency scattered light acoustic shielding in laser lab High frequency increased power new low-noise HF modulation generator

NewMiner

better surface quality lower losses larger, heavier? avoid radiation pressure problems facilitate control End

Old injection bench (OptoCad design)

H. Heitmann

Duty Cycle of last two commissioning runs

1. Micrecitation invidy and ions

=> more frequent unlocks when weather is bad

2DChieominateinais

High force needed for lock acquisition

=> bad DAC dynamics in steady conditions (low force)

H. Heitmann

Infeldancig

Inverted pendulum top platform is immobilized by

H accelerometers (inertial sensors)

IFLVDT's (ground based) => introduce seismic noise

Slín

Reduced HF/LF cross-over frequency to 30 mHz Not so simple ... (see G. Losurdo's talk)

Suspension: hierarchical control

After lock acquisition: reduction of mirror actuator gain => reduction of DAC noise

1.4 M_o coalescence detection range

C7 noise budget

Nircentering

Netebezueofasignafsmarksupetelbandipig

Adateg: landtehijesforningenteig

Necessary for reducing alignment noise which limits us at low frequencies

Trotechipesused

Visual centering

Where possible...

Mirror shaking at natural resonance

Find frequency in longitudinal motion (locking error signal)

Icelortdcamainge

observation of diffused beam spot while moving mirror

Before centering

□ After centering