

Max-Planck-Institut Für Gravitationsphysik (Albert-Einstein-Institut)

IGO-G060366-00-Z

A. Bunkowski, O. Burmeister, D. Friedrich,K. Danzmann, and R. Schnabel

in collaboration with

T. Clausnitzer, S. Fahr, E.-B. Kley,

and A. Tünnermann

Institute of Applied Physics, Jena

Universität

Hannover

Outline

1.1-1

2

Summary of: All-reflective Interferomtry (with multilayer coatings)

Outlook to: High reflective diffractive structures

(without multilayer coatings)

Motivation #1

3

Interferometers beyond LIGOII (MW of power)

Transmission → Absorption → Thermal problems

All-reflective interferometers:

- Allow opaque test mass materials
- New interferometer topologies

MI with all-reflective beamsplitter

Ę

What kind of gratings?

Grating equation:

$$d(\sin\theta_m + \sin\theta_{\rm in}) = m\lambda$$

Period defines # of orders & direction

Coating below

 $d >> \lambda$: scalar approach $d \sim \lambda$: rigorous theories (RCWA, Modal method) $d << \lambda$: effective medium theories (ETM)

Coating on top

A. Bunkowski et al, Applied Optics (in press) http://ao.osa.org/upcoming_pdf.cfm?id=66481

Need high efficiency

(which is hard to achieve)

99.62% achieved (Finesse of 1580)

2nd order Littrow

Only low efficiency

(3 ports are more Complicated)

A. Bunkowski et al, Applied Optics (in press) http://ao.osa.org/upcoming_pdf.cfm?id=66481

3-port couplers

Angle resolved scattering

Grating beneath coating

T. Clausnitzer et. al., Optics Express, 13, 4370 (2005)

Grating beneath coating II

T. Clausnitzer et al, Optics Express, 13, 4370 (2005)

Summary:

- High quality all-reflective components
- Demonstration of new cavity coupling concept
- Reduction of scattering loss

Outlook:

- Further reduction of loss
- Scale to large test mass
- Suspended 10 m all-reflected cavity to be built in Glasgow later this year

Motivation #2

I.H

Several fundamental noise sources as currently estimated for advanced LIGO:

S. Penn et.al, LIGO-P050049-00-R (2005)

Beating Coating Noise

The high refractive material *tantala*— (Ta_2O_5) has been identified to be the main source of *coating thermal noise*.

Some ideas so far:

- Less tantala in stack
 - → Innocenzo Pinto's talk
- Doping of tantala with TiO₂
 → Harry *et al*, Appl. Opt. **45**, 1569 (2006)
- Total internal reflection
 - → Adalberto Giazotto's talk
 - → V. Braginsky and S. Vyatchanin, Phys. Lett. A **324**, 345 (2004)
- Double mirrors:
 → F. Ya. Khalili, Phys. Lett. A 334, 67 (2005)

see for example: Sharon et al, J. Opt. Soc. Am. A, 14 (1997)

Liu et al, Opt. Lett. 23, 1556 (1998)

Design width of reflection peak

d: period g: groove depth r: ridge width s: film thickness r/d: fill factor

.

Design width of reflection peak

A. Bunkowski Nano-structured Optics for GW Detectors 19

Broadband mirror for 1550nm

A. Bunkowski Nano-structured Optics for GW Detectors

20

Summary:

- High reflectivity is possible with single layer
 Outlook:
- Check fabrication tolerances, finite size effects...
- Design, build and test gratings
- Think of better suited wave guide structures

great, greater, grating

T. LAR