

# Seismic Isolation & Alignment for Advanced LIGO: Update on Stanford ETF & New HAM baseline

presented by Brian Lantz for the SEI team, LSC meeting, August 16, 2006



# Progress on Seismic Systems for Advanced LIGO

### BSC at I Hz BSC at I0 Hz HAM

- Improved the sensors on stage 2.
- Improved the I Hz translation by reducing the tip/tilt.
- I Hz isolation is about 1000 (x10 better than req.)
- I Hz motion is  $2 \times 10^{-11}$  m/ $\sqrt{Hz}$ , (within 2 of motion req.)
- Demonstrated ultimate sensor performance for Advanced LIGO

# ETF performance: Horizontal





# **ETF Performance: Vertical**

G060379

4





# Direct measurement of L-4C noise floor





### Noise floor of the GS-I3 Inertial feedback sensor for

stage 2 of the BSC platform and for the HAM platform.

• Has new low-noise preamp (Jay and Brian).





# Single Stage HAM for Advanced LIGO

Mechanical design by Corwin Hardham

G060379 7



## Outline

- Calculations for optical motion in HAMs has been revised New requirements allow more motion.
- Review in April 2006 of new requirements,
- Committee adopted a new, simpler platform concept as the Baseline for HAM chamber Isolation and Alignment for Advanced LIGO.
- Mechanical System
- Control System
- Estimates of Performance

# Requirements









### Mechanical design by Corwin Hardham





# Various parameters used in the HAM model

parameters of the 1 stage HAM isolation system

| mass of stage (kg, structure)<br>mass from Corwin (for comparison)<br>trim mass (kg) | 1400<br>1166<br>100 |
|--------------------------------------------------------------------------------------|---------------------|
| payload fixed (kg)<br>payload fixed (kg)<br>payload suspended (kg)                   | 435<br>75           |
| total stage 1 fixed mass (kg)                                                        | 1935                |
| $IXX (Kg-m^2) (For 1935 Kg)$                                                         | /59                 |
| Rad Gyr X (III)                                                                      | 0.027               |
| Rad Gyr Y (m)                                                                        | 797                 |
| Izz (kg-m^2)                                                                         | //0                 |
| Rad Gyr Z (m)                                                                        | 0.631               |
| f0 - X (Hz)                                                                          | 1.22                |
| f0 - Z (Hz)                                                                          | 1.83                |
| f0 -rX (Hz)                                                                          | 1.04                |
| f0 - rZ (Hz)                                                                         | 0.984               |
| horizontal stiffness (N/m)                                                           | 1.10E+05            |
| vertical stiffness (N/m)                                                             | 2.54E+05            |
| rX stiffness (N-m/rad)                                                               | 3.33E+04            |
| rZ stiffness (N-m/rad)                                                               | 2.93E+04            |
| blade stiffness (N/m)                                                                | 8.60E+04            |
| blade length (m)                                                                     | 0.474               |
| blade width (m)                                                                      | 0.237               |
| blade thickness (m)                                                                  | 0.0107              |
| tip radius (m)                                                                       | 0.512               |
| effective rod length (m)                                                             | 0.132               |
| height of cg above LZMP (m)                                                          | 0.048               |

(tip radius is the distance from center of table out to the flexures which are located at the tips of the blade springs - important for rotational stiffness)



# Stiffness and Compliance

### DC stiffness is similar to existing HAM platform stiffness defined as F = K\*Xcompliance is X = C\*F

F in N or N-m, X in m or radians



based on Hytec model

# Damped plant - translation



![](_page_14_Picture_1.jpeg)

### Tech Demo experience Passive Isolation

![](_page_14_Figure_3.jpeg)

![](_page_15_Picture_1.jpeg)

# Blending for X & Y

![](_page_15_Figure_3.jpeg)

![](_page_16_Picture_0.jpeg)

# Isolation Loop, x & y

- Isolation factor of 3 at 10 Hz
- Unity gain at 27 Hz
- Like the Tech Demo
- All DOF are about the same.

![](_page_16_Figure_6.jpeg)

![](_page_16_Figure_7.jpeg)

# THE THE PART OF TH

### Tech Demo experience Active Isolation

![](_page_17_Figure_3.jpeg)

![](_page_18_Picture_1.jpeg)

# Coupling of HEPI motion

### Transmission of translational input motion HEPI motion -> table cg motion

![](_page_18_Figure_4.jpeg)

# Coupling of HEPI motion

### Transmission of rotational input motion HEPI motion -> table cg motion

![](_page_19_Figure_3.jpeg)

# HAM performance

![](_page_20_Figure_1.jpeg)

# Pendulum Isolation, beam direction

Assume a triple pendulum with steel wires, from Norna, April 2006

![](_page_21_Figure_2.jpeg)

G060379 22

# Test mass motion, beam direction

![](_page_22_Figure_1.jpeg)

G060379 23

![](_page_23_Picture_1.jpeg)

# Conclusions

- Confident in I Hz performance for Advance LIGO
- Single stage HAM with these control laws provides good performance.
- Most of the performance claims have been demonstrated with the Technology Demonstrator.
- 10 Hz ASD and 0.6 Hz rms meet new requirements.
- More work needed below 0.6 Hz (ASD and rms) (common mode rejection, LSC loop gain, try FIR isoaltion filters, better HEPI tilt control, better tilt sensors).
- Single stage is easier to build, commission, and maintain.