

Estimating Instrumental Correlations between Collocated Gravitational-Wave Interferometers

Milivoje Lukic Mentor: Vuk Mandic Caltech

08/11/06

LIGO-G060387-00-R

Stochastic gravitational-wave background

• Type of gravitational radiation produced by a very large number of independent and unresolved sources

• Energy density
$$\rho_{\rm GW} = \frac{c^2}{32\pi G} \left\langle \dot{h}_{ab} \dot{h}^{ab} \right\rangle$$

Characterized by log-frequency spectrum

$$\Omega_{\rm GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{\rm GW}(f)}{d\ln f} \qquad \left(\rho_c = \frac{3c^2 H_0^2}{8\pi G}\right)$$

Various models

• Cosmological origin:

» Inflation

LIGO

- » Phase transitions
- » Cosmic strings
- » Pre-Big-Bang models
- Astrophysical origin:
 - » Low mass X-ray binaries
 - » Rotating neutron stars
- Most models predict powerlaw spectrum in LIGO frequency range

$$\Omega_{\rm GW}(f) = \Omega_0 \left(\frac{f}{f_0}\right)^{\alpha}$$

Cross-correlation search

- Search performed for a template spectrum $\Omega_t(f) = \Omega_\alpha \left(\frac{f}{100 \text{Hz}}\right)^\alpha$
- Cross-correlation estimator (in frequency domain)

$$Y = \int_{-\infty}^{+\infty} df \ Y(f) = \int_{-\infty}^{+\infty} df \ \tilde{s}_1^*(f) \tilde{s}_2(f) \tilde{Q}(f)$$

- Theoretical variance $\sigma_Y^2 = \int_0^{+\infty} df \ \sigma_Y^2(f) = \int_0^{+\infty} df \ \frac{T}{2} P_1(f) P_2(f) |\tilde{Q}(f)|^2$
- $\tilde{Q}(f)$ is the optimal filter: $\tilde{Q}(f) = \frac{1}{N} \frac{\gamma(|f|)\Omega_t(|f|)}{|f|^3 P_1(|f|)P_2(|f|)}$
- Normalization constant N determined by $\langle Y \rangle = \Omega_{\alpha} T$

-k

Analysis details

- » $Y_i(f)$ and $\sigma_i(f)$ calculated for each segment i
- » Weighted average performed
- Sliding point estimate:

LIGO-G060387-00-R

» Produce values of $P_1(f), P_2(f), \sigma_i(f)$ which are less sensitive to noise transients and more reliable

- » Common instrumental noise sources
- » Shared environment

LIGO

Time shifts

- Gravitational-wave correlations are not expected to be coherent over more than ~10ms
- Instrumental correlations could be coherent over longer time-scales
- Instead of cross-correlating $s_1(t)$ and $s_2(t)$, crosscorrelate $s_1(t + \tau)$ and $s_2(t)$, for some value of τ
- Separate the long-lasting correlations from the shortlasting correlations

LIGO

Appropriate choice of time shifts and segment lengths

- If segment length is T, and the time shift is τ , we need $\tau \geq T$, in order to get independent realizations of noise for different time shifts
- We take $\tau = \pm T, \pm 2T$
- We wish to detect broad features, not expected to be correlated over time-scales longer than $\sim 1 {\rm s}$
- We wish good frequency resolution (T < 1s would give frequency resolution $\Delta f = 1/T > 1 {\rm Hz}$)
- Compromise: $T \sim 1s$

Data quality cuts

- Segments of data containing glitches (obtained from the burst group) are rejected
- "Large sigma cut": $\sigma_{avg} < threshold$

LIGO

- ΔPSD -cut: $\frac{\int |P_{\text{naive}}(f) - P_{\text{avg}}(f)|df}{\int |P_{\text{avg}}(f)|df} < \text{threshold}$
- About 20% of the data is rejected

• Residuals
$$\frac{Y_i - \langle Y \rangle}{\sigma_i}$$

Results

- The quotient $r(f) = Y(f)/\sigma(f)$ is a measure of the significance of the signal at a given frequency
- The functions r(f) obtained for time shifts of τ = ±1s contain most narrow features present in the function r(f) for τ = 0s; broad structures elude detection with this choice of parameters
- Analysis is under way with shorter data segments and smaller time shifts

LIGO-G060387-00-R

Coherence in environmental channels

- LIGO sites are equipped with numerous environmental monitors, monitoring various environmental noise sources
- Nickolas Fotopoulos (MIT): Coherences between strain channels and environmental monitor channels used to estimate H1-H2 coherences originating from shared environment

Conclusions

- By performing the time-shift analysis and the environmental channel analysis, we expect to be able to identify the frequencies at which instrumental correlations occur
- After identifying the "corrupted" frequencies, we can notch them out of the analysis, or we may be able to subtract the environmental contribution
- That would allow us to use the H1-H2 pair for setting upper limits (or detections!) in future science runs
 - » Potentially 10 times more sensitive

Acknowledgements

- Vuk Mandic
- LIGO
- Caltech