

Time domain simulation for a FP cavity with AdLIGO parameters on E2E

Osamu Miyakawa, Hiroaki Yamamoto Caltech

8/14/2006 LSC meeting at LSU

- Is it possible to acquire lock with radiation pressure?
- Is it possible to control alignment with radiation pressure?
- Optical spring in ASC?
- Do we need test mass actuator for ASC? both ETM and ITM?
- Is the actuator dynamic range enough?
- Noise performance?

advancedligo What implemented

- AdLIGO Quad suspension (Mark's model 03/31/2006)
- Local damping (6 DOFs of M0)
- Seismic motion and optical table motion on X,Y, tY and tZ (length, side, pitch and yaw)
- 3995m FP single cavity with AdLIGO parameters
 - » ROC = 2076m for both ITM, ETM test mass
 - » Full laser power inside cavity = 0.73MW
- Radiation pressure force on length and alignment
- Shot noise and radiation pressure noise
- Length control for M3 through M1, M2, M3
- M3 alignment control through M2 using WFS
- Electronic noise of WFS PD

advancedligo Local damping

advancedligo Local damping: impulse response

E2E simulation

Measured data

advancedligo

Quad suspension with radiation pressure (length)

Lock acquisition with radiation pressure

- 60nm/sec :enough slow to acquire lock for LSC by Matt Evans
- Radiation pressure and alignment incleded
- Full power : 0.7MW

vancedligo

- Lock can be acquired with less than few kW
 - » Is it possible such low power? Offset lock used at 40m? ->Optical spring
- Needs Monte Carlo simulation

advancedligo Alignment insta

- After lock acquisition, input power increased with no ASC.
- Pitch motion due to Radiation pressure breaks lock with 10%(70kW) of full power if there is no ASC

Test mass alignment control through M2 with radiation pressure

advancedligo Two modes of optical instability

Opt-mechanical (suspension) TF

- TF from M2 actuator to WFS error signal, simulated in time domain.
- Low frequency gain and peak are suppressed.
 - » Needs compensating gain for full power

advancedligo

- Optical spring in differential mode at 4.5Hz for pitch and 4.1Hz for yaw.
- Control BW must be higher than optical spring frequency.

Open loop TF of ASC

- 10Hz control band width
- Gain in low frequency is suppressed a lot by radiation pressure

advancedligo

advancedligo Noise performance

Actuation torque(force): 3x10⁻⁵ Nm (1x10⁻⁴ N) on M2 OSEM (max 20mN)

advancedligo Noise performance in spectra

- Spectrum depends on seismic noise model.
- Length to pitch coupling is not ignorable, but can be avoided using unbalance of OSEM.
- High frequency is limited by shotnoise at 10⁻¹⁴ rad/rHz with 100mW input(25mW for each quadrant).

advancedligo Electronic noise with low power

Full power: 0.7MW with electronic noise of 10⁻⁶rad/V, 100mVmax, 10nV/rHz

- » 10⁻¹⁴rad/rHz (same level as shotnoise), force: 3x10⁻⁴N_{p-p} (maximum:20mN)
- Low power: 1kW for lock acquisition, 7x10⁻⁴rad/V, 100mVmax, 10nV/rHz
 - » 7x10⁻¹²rad/rHz, force: 20mN_{p-p}(maximum:20mN) -> OSEM saturation

advancedligo Electronic noise with low power

- Feedback Penultimate mass(M2) and test mass(M3) for both ITM and ETM?
- Low/High gain WFS?
- Variable transimpedance of factor sqrt(700)?
 - Same level as shotnoise of low power case
- Pole around 30Hz?

advancedligo 2-pole at 30Hz

Seems stable

- Is it possible to acquire lock with radiation pressure?
 - » Yes, with less than few kW
- Is it possible to control alignment with radiation pressure?
 - » Yes, with 10Hz control band-width
- Optical spring in ASC?
 - » Yes, 4-5Hz
- Do we need test mass actuator for ASC? both ETM and ITM?
 - » No for full power, penultimate mass actuator enough, but might be necessary for low power
- Is the actuator dynamic range enough?
 - » Yes for full power: 1mN of 20mN, but No for low power: 20mN of 20mN -> low-pass filter around 30Hz
- Noise performance?
 - » < 10⁻⁹ rad

- Unbalance on OSEM
- Miss-centering
- Another g-factor
- Monte-Carlo lock acquisition test
- Lock acquisition for full DRFPMI case
 - » simulation time : real time = 10 : 1 for single FP cavity
 - = 200 : 1 for DRFPMI with LSC only
 - = 400000 : 1 for DRFPMI with ASC

->needs summation DRMI for alignment