

Suppression of LIGO Mirror Vibrational Mode Q's

Matt Seaberg Mentor: Eric Black

LIGO Acousto-Optic Coupling

LIGO Parametric Instability

Ju, et al. G050325-00

Condition for Instability

LIGO

Ju, et al. G050325-00 who got it from Braginsky, et al. Phys. Lett. A 305, 111 (2002)

LIGO Concern for AdvLIGO

- Likelihood of instability rises with circulating power
 - 830 kW for AdvLIGO compared to 10-50 kW
- Effect already observed in micro-cavities by Vahala group
 - Phys. Rev. Lett. 95, 033901 (2005)
- Later in suspended mirror cavity at MIT
 - LIGO-P050045-00-R (Oct. 27, 2005)

Toroid micro-cavity

Possible Solution

- Instability gain R also proportional to mirror acoustic mode Q's
 - Attempt to lower Q's without affecting thermal noise
 - Can be accomplished by placing ring dampers around mirror

LIGO Previous work

- Two types of rings have been studied in the TNI previously
- buna rubber, 1/8" thick
- Very effective at crushing Q's
- Raised noise floor at low frequencies (ring modes)

LIGO Previous Work

- Kapton tape
- Noise floor unaffected
- Also had insignificant affect on Q's
- Need something in between these two extremes

LIGO Copper Ring Dampers

- Placed on south cavity output mirror of Thermal Noise Interferometer (TNI)
- •Rings fastened with screw
- •Will measure how dampers affect mechanical Q's

•Ringbands have rectangular cross-section

Lico Ring Design

Shear wave equation (transverse waves)

$$\frac{\partial^2 y}{\partial x^2} = \frac{\rho}{G} \frac{\partial^2 y}{\partial t^2}$$

$$\Rightarrow \text{ wave speed } v = \sqrt{\frac{G}{\rho}}$$

$$f_n = \frac{2n-1}{4d} \sqrt{\frac{G}{\rho}}$$

Fixed on substrate

Predicts fundamental f = 145 kHz for 4 mm copper ring

- Well out of thermal noise region

LIGO SAC Total Noise

LIGO SAC vs. NAC

LIGO-G060455-00-R

LIGO Differential data

LIGO Possibilities

- Mass that rings add to mirror is not negligible
 - SAC mirror response recalibrated, did change slightly from previous calibration
- Ring dampers have raised SAC's noise floor

Conclusion

LIGO

- Copper ring dampers are doing their job
 - Unable to excite mirror acoustic modes
 - Seems that Q's are reduced so much that we're unable to measure quantitatively
 - Notch filter not needed for SAC lock at high power
- More still desired
 - Rings have introduced their own modes into displacement noise
 - Need to find out why these modes are there and eliminate them

LIGO Future Work

- Place solid rings around mirrors, instead of ones fastened with screw
- Determine what causes low frequency peaks
- Evaluate effectiveness at preventing parametric instabilities

LIGO Acknowledgments

Thanks to: **Eric Black** Akira Villar **Cacey Stevens** Greg Ogin LIGO SURF