Length Sensing and Control of AdLIGO

Kentaro Somiya, Osamu Miyakawa, Peter Fritschel, and Rana Adhikari

ISC session, LSC at LSU 2006.8.14

Contents

- Brief Review of LSC (1 page each)
 - DC readout in RSE
 - DDM with HF/LF control scheme
 - Constraints from MC, PRC, and Asymmetry
 - Simulation software
- Development of a calculation tool
- I'll show 4 candidates; let's pick one
 - Possibility of "flexible detuning"
 - Comparison

Brief Review of LSC

DC readout in RSE

Readout quadrature is determined by a ratio of contrast defect due to loss imbalance and offset light. (~30ppm)

The better one for binaries (ζ ~90deg) requires more offset light.

Laser noise becomes big.

Upper limit will be ~80deg. Also PD can afford <100mW light.

We choose 78 deg.

(~5.6e-12m offset)

Double demodulation with HF/LF control

L-: AP-DC readout, L+: SP-RF readout slp(l+), slm(l-), sls(ls) → Double demodulation

There are 2 ways of choosing 2 RF-SB frequencies.

9MHz-180MHz is HF, and 27-45MHz is LF control scheme.

Constraints from MC and Asymmetry

- AdLIGO uses same vacuum chambers as LIGO
- FSR of MC is fixed to ~9MHz
- Asymmetry can be extended but only up to 75cm

HF scheme

9-180MHz ($\Delta I=40$ cm) requires too-high DDM freq. Due to $\Delta I<75$ cm, the lowest possible f2 is 108MHz.

LF scheme

Required asymmetry is ~4cm. Use of common multiple of 9MHz helps to avoid harmonics problem.

Here we pick up 9-108MHz and 27-45MHz scheme.

Simulation software

Now we must calculate noise spectra to evaluate control schemes. Which freq-domain software should we use?

- FINESSE: High utility, RF- and DC-readout is available Radiation-pressure is not included (no optical spring)
- MIT code: Radiation pressure and squeezing effects are included RF-control is not included
- Analytical work : Most things can be calculated by Mathematica It won't cover everything
- Optickle: RF-control and Radiation pressure effect are included Squeezing is not available yet

We use both FINESSE and my Mathematica code, and combine them on Matlab.

Calculation of control-loop noise ~ development of tool

What we used to do

Length-sensing matrix (by FINESSE)

	L+	L-	slp	slı	m	sls
L+ port	1	L				
L- port		1		16	- 3	
slp port			1		Ţ	
slm port				:	1	
sls port						1

L- noise is calculated by BENCH.

- 1st order and 2nd order contributions were considered
- Degeneracy of signals did not appear in sensitivity
- Flat frequency response was assumed
- Improvement by factor of ~30 by feed-forward was assumed

Degeneracy causes reduction of gain; should be included.

Block diagram expression

What we did can be described like this.

- Shot-noise-limited sensitivity (x4=0)
- n4 appears on y2 when GH>1
- Degeneracy does not appear

There must be a better way to express the system.

Block diagram expression

- y4 is not only n4, even though x4 is zero
- Because y4 may include x2 (signal)
- The mixture of x2 will cause the gain reduction

Block diagram expression

If the gains are high,

$$h_i = \sum_j (A^{-1})_{ij} n_j / H_j$$

Noise is big if det[A]~0, which means degeneracy.

Now we combine tools.

Aij (sensing matrix at DC): FINESSE

Hij (transfer function): Mathematica

xj and nj (signal and noise): Mathematica

Gij (servo gain): Matlab

Frequency dependence

$H_{ij}(f)$	L_{+}	L_{-}	ℓ_+	ℓ	ℓ_s
L_{+}	cavity pole	flat	flat	flat	flat
L_{-}	2 peaks	2 peaks	2 peaks*	2 peaks*	2 peaks*
ℓ_+	flat	flat	$_{ m flat}$	flat	flat
ℓ	flat	flat	flat	flat	flat
ℓ_s	flat	flat	flat	flat	flat

$G_{ij}(f)$	L_{+}	L_{-}	ℓ_+	ℓ	ℓ_s
L_{+}	1/f; 30k	_	_**	_	_**
L_{-}	_	1/f; 200		Feed-forward	_
ℓ_+	_	_	1/f; 50	_	
ℓ	_	_		1/f; 50	_
ℓ_s	_		_		1/f; 50

Unity-gain frequency

- Only limited numbers of elements are calculated
 - ~ We need Optickle to complete all the elements
- TF from slm to L- shows 2 peaks like L- response
 - ~ It would be same for slp or sls to L-
- Feed-forward can be included
- Coupling from L+ to slp and sls via laser freq is not included

Downselection of control scheme

~ Let's see the first two candidates

9-108MHz scheme

Aij

j	L+	L-	Slp	Slm	Sls	Н	det/sh
SP f1	1	2.6e-3	1.1e-3	3.3e-6	2.1e-7	8.5e20	
AP DDM	3.7e-4	1	1.1e-6	1.3e-3	1.7e-6	8.5e19	0
SP DDM	-9.1e-3	-6.2e-5	1	-0.042	0.341	1.3e17	213%
AP DDM	4.4e-3	7.2e-3	-0.310	1	-0.438	-9.2e15	69%
PO DDM	-8.6e-3	1.3e-5	0.542	-0.110	1	9.4e14	<1%

- A[24] is determined by finesse of arm cavities.
- A[43] and A[45] is big due to large asymmetry for f1 (75cm, 9MHz).
- SP detector noise could be reduced by a use of SSB for f2.
- AP detector noise is large also due to big asymmetry for f1.

9-108MHz scheme

Sensitivity is limited by I- noise and Is noise. Let's try feed-forward.

With Feed-forward (1% accuracy is needed)

9-108MHz scheme

Now we have a good sensitivity curve. But we need 1% accuracy for feed-forward gain.

27-45MHz scheme

Aij

j	L+	L-	Slp	Slm	SIs	Н	det/sh
SP f1	1	2.5e-3	1.1e-3	2.1e-6	9.4e-7	9.0e20	
AP DDM	3.7e-4	1	1.1e-6	1.3e-3	1.7e-6	8.5e19	0
SP DDM	7.8e-4	1.3e-3	1	0.784	0.880	-5.9e16	165%
AP DDM	6.8e-5	1.4e-3	0.083	1	0.094	-1.0e16	3%
PO DDM	1.6e-3	2.7e-3	0.318	1.589	1	-1.0e15	1%

- Optical gains (H) are similar to those of 9-108MHz scheme.
- A[43] and A[45] is small due to small asymmetry for f1 (4cm, 27MHz).
- SP detector noise could be reduced by a use of SSB for f2.
- AP detector noise is small also due to small asymmetry for f1.

27-45MHz scheme

Sensitivity is limited by I- noise. Let's try feed-forward.

27-45MHz scheme looks better than 9-108MHz scheme. Are there any other conditions that we should meet?

Flexible detuning

- Detune phase is determined by f2-SB freq that resonates in SRC.
- So, it is fixed, so far to the optimal one for NS-NS binaries.
- But we may want to change it to the optimal for BH-BH.
- Or we may use lower power at the beginning; optimal phase changes.

Can we shift detuning by - adding offset to Is signal,

or

- changing SB freq within MC bandwidth?

Dynamic range of clean Is signal

Error signal of Is (HF scheme)

(LF scheme)

- Tunable range is ~+/-2 deg, regardless of HF or LF.
- Maybe we can lock to somewhere like here (non-resonant point).
- We have another operation point where f1 SB resonates in the SRC. (HF scheme doesn't have this feature due to a large asymmetry.)

Let's see loop-noise spectrum for each situation.

Slight detune-phase-shift by offset

27-45MHz with Feed-forward

 ϕ =2.5deg

 ϕ =3.5deg

Freq-dependence Of ϕ =2.5 is used.

Almost no change. Very good.

Operation at non-resonant point

w/o feed-forward

Very bad.

Operation with f1 being resonant

Relation between detune phase and RFSB frequency:

$$\frac{c}{2L_{\rm s}}=\pi\times\frac{f_1}{n_1\pi-\phi_1}=\pi\times\frac{f_2}{n_2\pi-\phi_2} \qquad \qquad {\rm n=integer}$$

Difficulty comes from the fact that f1 and f2 should be multiple of 9MHz.

If we set
$$\phi 2$$
 to be 2.5 deg,
27-45MHz >> $\phi 1$ =35deg (Ls= 7m or 57m)
9-45MHz >> $\phi 1$ =37deg (Ls=13m or 53m)
9-63MHz >> $\phi 1$ =26deg (Ls=14m or 52m)
27-63MHz >> $\phi 1$ =25deg (Ls=12m or 62m)

What if f1 is higher than f2?

Can we choose f1/f2 for 2.5deg and 14deg?

If we set ϕ 2 to be 2.5 deg,

- Asymmetry is set not to be optimized to one of them but middle
- For BHBH, as input power is low, we can increase m (set to 0.8)
- Attenuators can be removed but other optics are all fixed

45-9MHz scheme for NS-NS

Very good.

45-9MHz scheme for BH-BH

Very good.

Actually,...

It'd be better if we can continuously change detuning.

Is it possible?

We need new scheme.

Control scheme with the other polarization

- Flexible detuning may be possible with light that doesn't transmit MC
- We'll have Faraday after MC —— Let's inject light from Faraday

Single demodulation! No Mach-Zehnder!

Flexible detuning

SubCa should resonate in PR-SRC to probe Is signal. SubCaSB should resonate in PRC to probe I- signal.

Sideband frequencies

Carrier SB (PM) It should better resonate in the PRC m = 0.1It shouldn't resonate in the SRC ➤ 9MHz or 27MHz SubCa SB (SSB) m=1.15It should resonate in the PRC to probe I-Asymmetry factor should be as low as possible Modulation frequency should be as low as possible 216MHz (~ SubCa-108MHz) 1W SubCa It should transmit Michelson part (HF scheme) → ~324.3MHz

Let's see the sensitivity curve.

Dual-polarization control scheme for NS-NS

Quite bad.

Dual-polarization control scheme for NS-NS

Not good but close.

Let's make comparison

Now we have 4 candidates

- 1. f1=27MHz, f2=45MHz, asymmetry=4cm (LF scheme)
- 2. f1=9MHz, f2=108MHz, asymmetry=75cm (HF scheme)
- 3. f1=45MHz, f2=9MHz, asymmetry=6.7cm (LF scheme)
- 4. f1=27MHz, SubCa=324MHz, f2=108MHz, asymmetry=75cm

Let's make comparison

	27-45LF	9-108HF	45-9LF	dual-pol.
SB frequency	Low	High	Low	High
Loop noise	Good	Good	Good	Bad
Flexibility	1 for NS, the other is useless	Only for NS	1 for NS, the other for BH	It should be good
Misc.		Tested at the 40m	Harmonics ?	Many unknowns

- LF schemes look good
- Decision would depend on how we want flexibility
- How can we test LF scheme at the 40m?

Summary

- We developed a tool to calculate control-loop noise
- Now we can compare control schemes
- We look at Low-freq scheme and it works well
- Flexible detuning is attractive while quite hard to realize
- Using the other polarization is one possibility
- We'll be soon ready to pick one for AdLIGO, hopefully

- We're waiting for Optickle to be ready (esp. for vacuum!)
- Some parts in our calculation still needs modification
- How to test at the 40m is a thing to be considered