

## Using Deep UV LED Light to Mitigate LIGO Test Mass Surface and Bulk Charging





#### Ke-Xun Sun Stanford University

LIGO Science Collaboration (LSC) Meeting Louisiana State University August 16, 2006



LIGO

LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun







## Acknowledgments

- UV LED charge management experiment team: Sei Higuchi, Allex Goh, Brett Allard, Dale Gill Sasha Buchman, and Robert Byer
- LIGO test mass and suspension discussion: Rai Weiss, Norna Robertson, Roger Route, Brian Lantz, and Marty Fejer, Sheila Rowan, Jim Hough
- At LSC March Meeting

Ke-Xun Sun, Sei Higuchi, Brett Allard, Dale Gill, Saps Buchman, and Robert Byer, "LIGO Test Mass Charging Mitigation Using Modulated LED Deep UV Light, " LIGO Science Collaboration (LSC), OWG & SWG Joint Meeting, Hanford, Washington, March 22, 2006, LIGO Documentation G050143-00-Z









- Livingston experimental results after LSC March meeting
  - Vented, touched (discharged), BN range now 14 MPC
  - Charge is the suspect for previous higher noise floor
- Recent Experiment on UV LED charge management system
  - UV LED Spectral stability
  - UV LED power stability
- LIGO test mass UV Charge management
  - UV illumination effects on surfaces
  - UV illumination effects in bulk
  - High frequency AC charge management
  - New dimensions of measurements and calibrations
- Stanford experimental plan
  - LED
  - Charge management system
  - Coating
  - AC charge management for LIGO test mass



LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486502-ZSU\_Sun\_Charging\_060816.ppt, K. Sun









#### Livingston Observatory

#### L1 Interferometer Sets New Performance Standard

- May 5 2005, vented chamber, touched ITMY mirror etc
- After pump down, a sharp improvement in sensitivity that corresponded to a drop in the noise floor between 40-100 Hz.
- Electrical charge removal is suspected the reason for the improvement





LIGO Science Collaboration Meeting LSU, August 16, 2006 LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun





#### LIGO Test Mass Charges Accumulation Charges can accumulate on LIGO test mass and surrounding structure causing noise increase





#### \*From Braginsky LIGO-G020033



LIGO

LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun







Charge Management Experiments at Stanford

- AC charge management using modulated UV LED light
- UV LED lifetime test
- UV LED based charge management system development
- Metal surface scanning UV photoelectron studies
- Dielectric surface and bulk charge effects











### UV LED Lifetime Experiment





LIGO Science Collaboration Meeting LSU, August 16, 2006







## UV LED Operated for AC Charge Management

#### **UV LED Direct Readout**





LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun





#### Spectral Stability



•UV LED emission spectrum before (red), after 250-hour operations (blue).•No major spectral shift is observed.

•UV LED is highly expected to last for significantly longer than 1,000 hours.



LIGO

LIGO Science Collaboration Meeting LSU, August 16, 2006







#### Power Stability



- Power stability of the UV LED is shown over the entire operating duration.
- Power level has stayed relatively constant, as observed using a UV photodiode.









# LIGO Test Mass Charging

- Test mass charging due to:
  - Cosmic ray ionization ? (Braginsky G020033)
  - Pumping system transportation (Rowan CQG 14 1537)
  - Dust rubbing transfer (Harry, G040063)
- Test mass charging consequences:
  - Reduction of suspension Q (Rowan, Harry)
  - Non-Gaussian noise due to charge hopping (Weiss)
  - Possible noisy forces due to other charged bodies
  - Charge problem at L1 (Livingston 4k interferometer)
- The consensus reached:
  - LIGO Test mass charges need to be managed







# UV Photon Source Requirements for LIGO Test Mass Charge Management

- $Q_c \sim 10^{-7} \text{ C/m}^2$  commonly cited
- Charging rate  $Q_c \sim 10^{-7}$  C/day
- $N_e \sim 10^{12}$  electrons/day (or  $N_e \sim 10^7$  electrons/second)
- Photoelectric "Q. E.":  $\eta \sim 10^{-5} \sim 10^{-7}$
- UV photons required:  $N=10^{14}$ /second
- $P_{UV} = Nhc/\lambda T = 10^{-9} 10^{-6} W$
- $P_{UV} \sim 1 \text{ nW} 1000 \text{ nW}$  (average power over a day)
- Dynamic Range ~ 1000
  - $P_{UV} \sim 1 \text{ mW}$  (Peak power)



LIGO





## **Conductive Coatings**

- Many kinds:
  - Transparent ionic conductor: MgF<sub>2</sub>, ITO .....
  - Thin metal layer: Au (50 A)
- Coating on the side and back of the test mass





LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun







### **Conductive Coating Patterns**





LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun





# **UV Illumination Schemes**

• Direct illumination

LIGO

- UV mercury lamp is routinely used for attachment removal
- UV LED has sufficient power for cw or pulsed direct illumination
- Need to make sure no solarization (tanning) effect

- Illumination on coatings
  - Thin Au coating on noncritical portions of test mass and suspension structure
  - Photoelectric effect on thin Au coating is common mechanism for photocathode
  - Higher throughput in charge control









### Au Photodiode Photocurrent Response vs. Fiber-Tagged UV LED Current Efficient Photoelectron Emission Observed

Advantages of direct replacement of mercury lamp with UV LED:

- Significant power saving
  - 1 W for UV LED CMS (including all control electronics)
  - 15 W for Hg lamp CMS
- Significant weight reduction
  - 4~5 kg per spacecraft
  - 12~15 kg for launch
- Easy environmental management:
  - Less heat generation near GRS module
  - Much less EMI



(Au phototube UV power calibration  $\sim 16 \mu W/mA$ )



16



LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun

# UV-Induced Bulk Conduction in Dielectric Insulator

Direct Experimental Determination and Modeling of VUV Induced Bulk Conduction in Dielectrics during Plasma Processing Mayur Joshi, James P. McVittie<sup>\*</sup>, Krishna Saraswat

Center for Integrated Systems, Stanford University, Stanford, CA 94305. \*Email: jmcvittie@stanford.edu







LIGO

LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun







## UV LED Charge Management Experimental Setup



#### • GP-B heritage

- Au coating on proof mass and housing to simulate LISA GRS
- Fiber connected UV LED driven by modulated current source
- Housing electrode modulation phaselocked to UV modulation
- UV light shining on proof mass and reflected onto housing electrode
- Sensitive electrometer to measure the proof mass potential



18



LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun

LIGO

# Positive Charge Transfer

#### UV LED and bias voltage modulated at 1 kHz



LSC





## Negative Charge Transfer

#### UV LED and bias voltage modulated at 1 kHz





LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun





### UV LED Based AC Charge Management





Results for AC charge transfer studies using a UV LED with observed power or ~11  $\mu$ W at a center wavelength of 257.2 nm. The image on the left shows the UV test facility. The figure shows both charging and discharging over a proof mass potential of +/- 20 mV.



LIGO

LIGO Science Collaboration Meeting LSU, August 16, 2006

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun





# Charge Management Experiments at Stanford

- 1. AC charge management using fast modulated UV LED
- 2. UV LED lifetime test (running 2440 hours so far)
- 3. UV LED based charge management system development (in design process, with the success of the UV LED lifetime tests)
- 4. Metal surface scanning UV photoelectron studies (on going experiments: Nb and Au)
- 5. Modeling efforts
  - Electrostatics
  - Material effects
- UV charge and transport effects in dielectric surface and bulk (experiment designed, chamber and vacuum system located) --- will be mostly focused on LIGO
- 7. Kelvin probe
  - Metal surface data (GSFC, Norna, Jordan)
  - UV correlated experiments



LIGO

LIGO-G060486500-ZSU\_Sun\_Charging\_060816.ppt, K. Sun

