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Using the Laser Radiation as the Yardstick
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2 SUMMARY OF TECHNICAL MERITS

Nd:YAG is expected to be a light source which will be suitable for enhanced and advanced LIGO

interferometers. In the laboratory, Nd:YAG and other solid-state lasers exist already which are
suitable for engineering into ‘enhanced’ interferometers (with 40 W of power, equivalent to 20 W
of Argon 514 nm light). In contrast, Argon lasers have no promise of more than 20% increases in
power. Thus, we see a need to change to solid-state lasers shortly after commissioning of the ini-
tial LIGO interferometers.

To first order, then, we wish to anticipate that change and to iest if we cannot start the initial LIGO
interferometers with a light source and wavelength which would allow an adiabatic change to
higher power. This can save schedule, and reduce the net cost, of arriving at an enhanced level of
shot-noise limited sensitivity.

A second reason to investigate Nd: YAG lasers at 1064 nm at this time is to evaluate possible per-
formance advantages from the different wavelength. Relaxed mirror specifications, and lower
Rayleigh scatter in the substrates, are examples.

In summary, there do not seem to be any aspects of the interferometer performance or engineering
difficulty which would be significantly adversely impacted by a change to 1064 nm and Nd:YAG
for the initial LIGO interferometers, and all indications that higher power lasers will be in parallel
development (driven by a rapidly growing industrial demand). There are a number of places
where more in-house effort will be required, to characterize new components, but sharing with
laser groups and other GW groups can reduce this burden.

The tables below summarize the differences between a Argon-514nm interferometer and a Nd-
YAG-1.06p1 m laser. Points which can be clearly seen as disadvantages are indicated in italics.
Details are given in Appendix B. Most categories should be self-explanatory; by ‘engineering sta-
tus’ we mean to give a one-line summary of the availability of a commercial solution, the engi-
neering future, the rate of progress in the field, etc.

Tahle 3.1: Lacer Technical Summary

parameter/part NA:YAG Argon
- g Merit/Demerit Merit/Demerit
power initial power available, i initial power available;
future power assured; no further increases prob-
~2x power required for given | able,
sensitivity
cfficiency several 102 104

page 3 of 34
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Joart Nd:YAG Argon
parameter/part Merit/Demerit Merit/Demerit
mean time before 10,000 MTBF 8000 MTBF
failure (commercial specification) (commercial specification)
10-20,000 MTBF ~2000 MTBF
(Byer experience) (LIGO experience)
failure mode ~20% reduction in power no light
raw frequency noise, 90 Hz | 102 g5/ JHz 10* Hz/ JHz
raw intcnsity noise, 90 Hz 10-6 S1/1 l/afI'TZ- 10—4 SI/1 I/JI‘TZ
raw intensity noise meets 3 MHz ~5 MHz
~100 mW shot noise
beam jitter not yet characterized; characterized
reported to be small
engineering status ~$1M+ I year development | ready
future development growing market static 1o declining market,

Nd:YAG Argon
parameter/part MeriyDemerit Merit/Demerit
power handling to 20 watts to 5 watts
sensitivity 210 volts/w, 1.06 pm | 1000 volts/x, 514 nm
frequency range | to 100 MHz to 60 MHz (in pairs)
engineering status | commercial item commercial item

Table 3-3: Core Optics Technical Snmmary

mity (random errors)

Nd:YAG Argon
parameter/part Merit/Demerit Merit/Demerit
mirror size back mirror >27 crr | <25cm =» L 200w
figure requirements Argon *./2 Ag, 47600
(sample requirement) )
=Ag 4/ 424
required coating unifor- 0.1% 0.1%

|

page 4 of 34
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Evaluation of Nd:YAG(1064nm) Lasers for Use in

the Initial LIGO Interferometers
17 August 1995
Science Conference Room (818-395-2067)

e Barry Barish 0900 - 0930

- QOpening remarks & review of the charter for the trade study
¢ David Shoemaker 0930 - 1000

— Review of findings with regard to TECHNICAL feasibility for
using YAG lasers

e Discussion of technical issues
1000 - 1100

e Alex Abramovici 1100 - 1130

— Review of findings with regard to IMPACT of making a change
to YAG lasers

e LUNCH | 1130 - 1200
* Discussion of programmatic issues
1200 - 1330
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CALIFORNIA INSTITUTE OF TECHNOLOGY Sred

Laser Interferometer Gravitational Wave Observatory (LIGO) Project

To: LIGO/Distribution
From: B. Barish and G. Sanders, 2R /é/’ %7
X . Phone/FAX: Ext. 6684 and 2997 : Visia
@éﬁ/él \Sa (/Q}L/ Refer to: LIGO-L950722-00-M

Date: Scptember 14,1995

Subject: Lasers

We have carefully considered possible laser strategies for LIGO and are persuaded that we should
switch to 1.06 pm YAG lasers, and that this should be accomplished as quickly as possible. We
believe the long term benefits to LIGO of making this switch now are considerable and are well
aware of the shorter term impacts of this change. Success, therefore, depends on working
together to quickly and effectively affect this change, to acquire and gain experience with YAG
lasers and to research our R&D and detector programs to minimize the scheduling and other
short-term impacts. To do this we must build a very strong YAG effort and we must aggressively
and creatively work all the issues involved in the switch. To accomplish this, we have asked Stan
Whitcomb (and he has agreed) to lead our effort on the YAG and we promise him our strong sup-
port. As soon as Stan can describe a plan for the effort the LIGO Change Control/Technical
Board will be asked to formally review this change to the baseline.

This YAG decision has been made following a process that began with a presentation (at our
request) by David Shoemaker at the May 1995 Science-Integration meeting. We followed that by
tasking Shoemaker and Abromovici to do a more quantitative study resulting in a technical note.
We invited all to participate in a discussion meeting on August 17, 1995. Following that meeting,
we invited individual input and received many thoughtful replies.

There are many complex issues involved in this decision and judgement is involved in making the
final decision. We have weighed heavily the long term objectives of finding the clearest path
toward reaching and exceeding the initial design sensitivity ot LIGO. Although others weighed
different factors more heavily, we can report that there is a near consensus on whether we should
make the switch.

it work. In a large group effort like LIGO it is essential that we bring out hard issues, carry out an
open process to evaluate them, make carcfully considered decisions, and then that we all get
behind the decision and move on.

We thank everyone for their hard work, thoughful input, and in advance, for their support of this
important LIGO decision.

BCB:d:

¢c: Chronological File
Document Control Center

InterOffice Memorandum
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FIXED-PRICE CONTRACT
Contract No. PC198201

BETWEEN

__CALIFORNIA INSTITUTE OF TECHNOLOGY
1201 E. CALIFORNIA BLVD.
PASADENA, CALIFORNIA 91125

AND

LIGHTWAVE ELECTRONICS CORPORATION,
1161 San Antonio Road

Mountain View, California 94043

THIS CONTRACT FOR

Design and Fabrication of Nd3+ Lasers

ISA

SUBCONTRACT UNDER A NATIONAL SCIENCE FOUNDATION
COOPERATIVE AGREEMENT NO. PHY-9210038

CONTRACT PRICE: $735,424.00
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LIGO 10-W Laser Schematic Diagram
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Nonplanar Ring Oscillator

* (NPRO)
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Pump Beam

Output Beam

Magnetic field enforces unidirectional operation.

IJnidirectional operation leads to single-frequency oscillation.,

Magnetic
Field

Monolithic crystal design leads to stable frequency.

No efficiency penalty relative to multi-mode lasers.

Length of crystal: 3 mm Output power: 50 mW
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Output Power (W)

LIGO 10-W Laser Brassboard Unit Data

Double-Pass Output Power
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LIGO 10-W Laser
Performance Requirements

* > 10 W in circular TEM; mode

»> <1 W total in all non-TEM, modes

e Relative power fluctuations < 107 (Hz) /2

>> 100 Hz to 10 kHz
¢ Within 2 dB of shot noise limit for 10 mA of
photodetected current (7 x 10 (Hz)'l/ 2 )
»> Above 24.5 MHz

* Frequency fluctuations < 500 x (100/f) Hz/./Hz
»> 100 Hz to 10 kHz

* Relative pointing angle fluct. < 3 x 107 (Hz)'l/ 2

>> Above 150 Hz

o ¢, *2 Umy,s e, Tiwes Friuwen. Fa:lues.
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LIGO Project

Power Measurement

Caltech lightwave
PSL - NPRO 126 S/N: 170
Date Hours Power Meter |Power Control | mw/day | Current | Adj. psl
(mw) (mw) (amps)
11/27/9% 0 600 600 2.52 0
1/7/97 984 560 600 2.52 0
1/21/97 1320 530 600 252 0
3/18/97 2640 590 595 H 2.52 0
4/17/97 3360 505 2.52|adj
4/23/97 3504 595 600 2.54 0
5/1/97 3696 587 570 2.54 0
5/1/97 3696 600 585 2.54|adj
5/8/97 3864 582 570 2.54 0
5/15/97 4032 570 555 2.54 0
5/19/97 4128 558 548 2.54 0
5/22/97 4200 510 511 25 ()
5/27/97 4320 500 496 25 0|off
6/2/97 4320 530 526 2.54 Ojon
6/3/97 4344 485 489 25 0
6/4/97 4368 480 489 25 0
6/5/97 4392 490 503 i 25 0
6/6/97 4416 600 600 2.775|adj
6/9/97 4488 540 548 2.775 0
6/10/97 4512 510 526 2.775 0|fail!
from 5/01-6/5/97  |overall 696 hrs |POWER LOSS= | 3.7931034 mw/day
I

Lightwave PSL s/n: 170

8/14/97
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Longer Lifetimes.
Choice of Wavelengths.
On-Time Delivery.

Aluminum-Free IR Laser Diodes

Longer lifetimes. We're shipping aluminum- On-Time Delivery. Our new diode growth
free, high-power laser diodes. Because there’s and production facilities mean we ship to our
no aluminum, any oxidation at the facets — the customers. What they want. When they

leading failure mechanism in
laser diodes — is gone, too.

want it. We're equipped for
highly  reliable  production,
using the latest technologies
in automation and statistical
process control. And our
commitment is reliable delivery,
whether it's one  device
or 10,000.

Choice of wavelengths.
We  offer you  standard
products at 670, 805, 808 and
980 nm, usually off-the-shelf.
Other wavelengths, tuned to
your specifications, are also
available. Tell us what you want. We have it, Call now for all the facts. We'll send
or we'll work with you to make exactly you the information, overnight.

what you need.

Call 1-800-527-3786 o*7o %>

Circle 488 L 4

: 5 2

wme 5100 Patrick Henry Dnive, Santa Clara, CA 95054 - = S
%ERE_[J_L@ Telephone 1-408-764-4983 ® FAX 1-800-362-1170 or 1-408-988-6838 @ E-mail: tech_sales@cohr.com %.//WW o _CEF

Japan +81 (3) 5635 8700 @ Benelux +31 (79) 3621313 ® France +33 (01) 6985 5145
LASER GROUP Germany +49 (6071) 9680 # United Kingdom +44 (1223) 424065




We Understand Your Business. For many
years, we've been diode customers ourselves.
So we know, first-hand, the challenges you
face. And we understand how meeting a single
request — for performance, reliabilty and on-
time delivery — can be critical to your overall
success. We bring a true customer focus to the

laser diode business. Let us work with you to
prove it.

Circle 492

See us at CLEO, Booth 528



Pre-stabilized Laser Performance Requirements

e Qutput power:
»> > 8.5 W in circular TEMy, mode
e Beam Quality:
»> < 100 mW total in all non-TEM; modes
e Relative power fluctuations in GW Band:
»> <107 (Hz)"'/? from 100 Hz to 10 kHz
e Relative Power Fluctuations Above 24.5 MHz:
»> < 1.005 x shot noise limit for 600 mW laser power

e Frequency fluctuations:

»> < 0.1 x (100/f) Hz///Hz from100 Hz to 1 kHz
e Beam Relative Pointing Angle Fluctuations:
» <2x 100 (Hzy'!?

14 of 23 LIGO-G970191-00-D
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Measured Relative Power Fluctuations
NPRO Pre-Stabilized Laser Data
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LIGO Frequency Stabilization Strategy
Three Nested Loops

" 4-km
interferometer

107 Hz / (Hz)"
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LIGO Frequency Stabilization
Control Topology

10'Hz//Az ___, 10°Hz/Hz 107 Hz/./Hz
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Pre-stabilized Laser
Frequency Stabilization Strategy

REF. CAV.

t

ADDITIVE OFFSET
~ ACTUATOR

-

WIDEBAND

PSL Frequency Control Concept

4114197 @ input I> Amplifier
~rick/Yag/Documents/control_fig.id
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Measured Frequency Fluctuations
NPRO Pre-Stabilized Laser Data

Suspended cawty error s:gnal May 1997

Hz\[Hz

freq (Hz)
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Relative Power Fluctuations Above 24.5 MHz

e Noise propagation in MOPA systems

(T. Ralph, ANU and W. Tulloch, Stanford)

V is the ratio of PSD of the relative power fluctuations
to PSD of relative power fluctuations for a shot-noise-
limited beam of the same power.

H is the power amplification factor.

* For H=20,evenfor V,,n, = 1, Vp, = 39.

e High -frequency power fluctuations must be
attenuated. |

»> Pre-mode-cleaner

S 20 of 23 LIGO-G970191-00-D
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Relative Intensity Noise recorder
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The justification for this statement begins with the following expression which relates the relative
power fluctuations in the output of a MOPA system to those of the maser oscillator.!

Vmors = H(Vyo+1)-1

Here Vp, is the ratio of the power spectral density (PSD) of the relative power fluctuations in the
power amplifier output relative to the shot noise limit for a beam of that power, H is the power
amplification factor, and V,,, is the ratio of the PSD of the relative power fluctuations in the mas-

ter oscillator output relative to the shot noise limit for a bearm of that power. If one samples a frac-
tion of nhze output of the MOPA, the PSD of relative power fluctuations in the sampled beam is
given by

Vsamp = 1+0(Vpppa— 1)

Here my is the ratio of the sampled power to the MOPA output power. Combining the two expres-
sions above gives

For the LIGO 10-W laser, where the master oscillator power is approximately S00 mW, and in the
case where the sampled power is approximately 600 mW (the expected power at the dark port of

the interferometer), Vg, p= Vo + 2. Thus, even if the PSD of relative power fluctuations of

the master oscillator is at the shot noise limit (V,,, = 1), the PSD of the relative power fluctua-

tions in the sampled beam will be approximately three times the shot noise limit. In order to
reduce the relative power fluctuations to the required level, a passive optical filter, a pre-mode-
cleaner (PMC), will be employed.

Using the vocabulary introduced by T. Ralph, the filtering of the PSD of relative power fluctua-
tions as a function of frequency by a Fabry-Perot cavity is given by

1 \
j(VINPUT_ +1

v = | ———
rranstS) [1 +(f/f)°

1. Private conversation with T. Ralph of Australian National University, Canberra, Australia.
2. ibid.
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Shot-noise-limited Power Fluctuations

MO

Vmo

» PA

Vp4

» PMC

VrraNS

>

BS

Vsamp

* Required Pre-mode-cleaner bandwidth

fc=f{

NHV o+ 1) - 2] 1}‘1/2
Veamup(H) -1

M is the fraction of the beam sampled.

For Vg,,p < 1.01,f=24.5MHz,n = 0.6/10, H=20and V,,, =1,

f,<1.63 MHz
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The Pre-mod:e-—»cleaner

»> Developed in collaboration with N. Uehara, B. Willke,
and E. Gustafson of Stanford University

M3
R=-1m
M1 flat
-
— 1
/’- )
PZT M2 flat
[ (O ) 1.969
6.890 1.18%

DIMENSIONS IN INCHES
MATERIAL: FUSED SILICA

» f.<1.65MHz (finesse ~216)

»> Operated in air, close to LIGO circulating power (150 kW/cm?)

»> Transmission efficiency > 98%
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