Photodiodes for Initial LIGO

Nickel and Dime Gravity Meeting

THe Second Eastern Gravity Meeting Sat-Sun, 28-29 March 1998

P. Csatorday

LIGO Laboratory

Massachusetts Institute of Technology

A. Marin, P. Fritschel, M. Zucker

Outline

- Introduction
- General Requirements
- Some Measurement Results
- Conclusions

Introduction InGaAs Photodiodes in LIGO

- Detection of RF modulated light
 - >>Length Control Signals (Alignment uses other devices)
 - >>Gravitational Wave Signals
- For LIGO I, tested commercial diodes
 - -EG&G, Hamamatsu, GPD (2mm and 3mm diameter)
 - -Choice: EG&G 2mm (omit discussion of others here)

Detector SNR Requirements

• LIGO I: $f_{mod} = 25 - 32$ MHz

>> need low diode resistance and capacitance

-Ex: EG&G 2mm at 10V Reverse bias 72 pF, 9 Ω

Measured Linearity

LIGO-G980048-00-R

Backscatter

Photodiode Surface Backscatter

$$h_n^2 \sim P_{dp} \cdot BRDF \cdot \Delta \Omega \cdot \frac{\omega_0^2}{\omega_{pd}^2} \cdot \delta x_{pd}$$

- BRDF: "Bidirectional Reflectance Distribution Function"
- optical isolation (costs efficiency)
- seismic /acoustic isolation (costs \$)
- improved BRDF
- larger detector area

Backscatter Measurement

BRDF Measurement Results

Diode	BSDF (BRDF) at 6.5° (10^{-4} /ster)
Hamamatsu (G5832-2)	1.1
EG&G (C30642G)	0.37
GPD (GAP2000)	0.11

Table 1: 2mm Diode Backscatter

• Requrements: 10⁻⁴/ster

Power Handling

- Steady State (600mW at DP for LIGO I)
 - >> N_{pd}≥P_{dp}/P_{MAX}≈4
 the fewer, the better (SNR, \$, scatter,...)
 >>tradeoff against linearity

Transient

- >>Sudden loss of lock releases stored energy U~3J through dark port
- »P_{refl} rises briefly to 4 P_{in}

Damage likely due to thermal effects (bias has automatic safety switch)

-EO shutter may be required (costs efficiency)

-Thermal properties of diode & package

Other Issues

• High Quantum efficiency

>> Greater than 80% at ND:YAG wavelengths

-InGaAs necessary (Si is roughly 20%)

-Tests: all about 85%, but different Anti-Reflection coatings

• Spatial uniformity

- Defeats modal orthogonality, enhancing effect of beam tube scattering recombination

Requirement of ~ 1% uniformity for LIGO I is met

Conclusions

- InGaAs Photoiodes will be used in LIGO I
- We have extensively tested commercial items
- Baseline design will require 4 diodes at DP
- Specs Summary

Parameter	LIGO I	Current design
Steady-state power	0.6 W	0.75 W
Transient damage	3 J / 10 ms	3 J / 10 ms
Signal/Noise	1.4 x 10 ¹⁰ Hz ^{1/2}	1.5 x 10 ¹⁰ Hz ^{1/2}
Quantum efficiency	80%	83%
Spatial uniformity	1% RMS	1% RMS
Surface backscatter	10 ⁻⁴ /sr	< 10 ⁻⁴ /sr

