Collaboration on Development of Sapphire for Test Masses

Stan Whitcomb

23 April 1998

Large Optical Components ("Core Optics")

- Test Masses
 - >> End Mirror
 - >> Input Mirror
- Beamsplitter
- Recycling Mirror
- Initial LIGO substrates will all be fused silica
- Future LIGO substrates????

Issues for Choosing a Test Mass Material

- Optical surface quality (LIGO, ACIGA, Industry)
 - >> Low spatial frequency surface figure errors, leading to small angle scattering
 - >> Microroughness
- Optical homogeneity and birefringence (ACIGA, Virgo, LIGO)
 - >> For transmissive applications
- Thermal distortion and lensing (Virgo, Stanford, LIGO)
 - >> Bulk Absorption
 - >> Thermal Conductivity
- Thermal noise (ACIGA, Virgo, LIGO)
 -)) High mechanical Q to minimize thermal noise ($Q \sim 10^6-10^8$)
 - >> Size, density, speed of sound,...
- Producibility and cost (LIGO, Crystal Systems, SIOM)

Thermal Noise

- The primary motivation for sapphire test masses is thermal noise
- Thermal noise

$$\Delta x^2 = \frac{4kT}{\omega} \cdot \frac{\Phi(\omega)}{M\omega_0^2}$$

-)) Loss factor Φ for sapphire ~0.1 that for fused silica
-)) Sapphire is denser than fused silica (~ x2) and has higher speed of sound so $M\omega_0^2$ is larger by x6
- Net gain is nearly x10 in internal thermal noise
- (Provided suspension does not compromise internal Q)
- Near-term tests of Q's at UWA(ACIGA), eventually at Virgo/ LIGO

Polishing: Low Spatial Frequency Surface Errors

• What we know about industry capability over 25 cm diameter:

 Polishing samples currently being done for LIGO by CSIRO(ACIGA) and General Optics

Microroughness

- Largest source of lost optical power in initial detectors
- Sapphire is an exceptionally hard material
 - >> Moh hardness 9 (vs. ~6 for fused silica); harder than most polishing powders
- Microroughness < 1 Å demonstrated 10 years ago
 - >> But never on the scale of LIGO optics
- For simple "smooth" surfaces,

Scatter Loss =
$$\left(4\pi\frac{\sigma}{\lambda}\right)^2$$

- \rightarrow For $\lambda = 1.063 \mu m$, $\sigma = 0.2 nm$, scatter loss ~ 6 ppm
- Point defects likely to be an issue due to use of diamond dust
 - >> Point defects will cause few ppb loss each
- CSIRO and GO pieces to be tested by LIGO

Coating Issues

- Main coating issue: Stress
 - >> Thermal expansion coefficient of sapphire ~15 x that of fused silica
 - >> Expansion coefficient has different values parallel and perpendicular to crystal axis
- Anisotropy in expansion will lead to birefringence in mirror, i.e., cavity will have different resonance point for different polarizations
 - >> Observed in cryogenic (?) cavity at UWA at 0.1 milliradian level
 - >> Leads to requirement that even ETM's should have crystal axis normal to mirror surface
- Discussions with REO indicate willingness to work with LIGO on development and no particular concerns about coating sapphire

Optical Homogeneity

- Higher index of refraction for Sapphire means that equal $\delta n/n$ gives factor of 2 larger OPD
- Limited number of measurements have given as good as $\delta n = 3 \times 10^{-6}$
 - >> May be measurement limited....
 -)) Compare fused silica 2.5 x 10⁻⁷
- Technology for control of optical homogeneity not yet well developed
- Working with Crystal Systems and Shanghai Institute of Optics and Fine Mechanics (SIOM) to evaluate current capabilities

Heating Effects

- Surface distortion
 - >> Important for reflective and transmissive optics
 - >> Typically not most important in SiO₂ due to low expansion coefficient
- Thermal lensing
 - >> Important for transmissive optics only
 - >> Important in SiO₂ due to low thermal conductivity and high dn/dT
- Heat deposition matches beam profile; temperature gradient from heat flow to optic surfaces (radiatively coupled to vacuum chamber)
 - >> First order distortion is a simple change in radius (or simple lens)
 - >> Gaussian beam profile leads to higher order distortions

Absorption in Sapphire

 Source of absorption unknown; some speculation due to Ti³⁺ (Stanford data show some correlation with fluorescence)

Sample	Blair et al. Published Measurements	Absorption- Stanford Measurement	Absorption- Virgo Measurement
Union Carbide (1996)	16 - 22 ppm/cm		
CSI Hemex Ultra	55 +- 4	140	
RISC, China	200 +- 20		
Melles-Griot	11 - 16		
CSI White	3.1 - 3.5	120	
CSI White #0 (1998)		41 (recal underway)	
CSI White #1 (1998)		68 (recal underway)	142 +- 15
CSI White #2 (1998)		58 (recal underway)	90 +- 10

- Typical SiO₂ values 2-20 ppm/cm at 1.064 μm
 - >> IR absorption due to OH (usually?)

Surface Distortion

Reflective optics

- >> Proportional to absorption (of coating)
- >> Inversely proportional to thermal conductivity of substrate
- >> Proportional to coefficient of thermal expansion
- Compare sapphire with fused silica

Property	Fused Silica	Sapphire
Thermal Conductivity	1.4 W m ⁻¹ K ⁻¹	30 W m ⁻¹ K ⁻¹
Coefficient of Thermal Expansion	5 x 10 ⁻⁷ K ⁻¹	8 x 10 ⁻⁶ K ⁻¹
Relative Surface Distortion	1	~0.7

Thermal Lensing

- Important for transmissive optics only
 - >> Proportional to absorption
 - >> Inversely proportional to thermal conductivity of substrate
 - >> Proportional to dn/dT
- Compare sapphire with fused silica

Property	Fused Silica	Sapphire
Absorption	4 ppm/cm	10 ppm/cm (????)
Thermal Conductivity	1.4 W m ⁻¹ K ⁻¹	30 W m ⁻¹ K ⁻¹
dn/dT	9 x 10 ⁻⁶ K ⁻¹	13 x 10 ⁻⁶ K ⁻¹
Relative Thermal Lensing	1	~ 0.15 (????)

Production Capacity

- Sapphire boules up to 65 kg have been produced in test runs
- Standard production sizes up to 32 cm dia x 15 cm (~30 kg)
 - >> But not (yet?) with C axis parallel to cylinder axis
- Largest C-axis pieces currently 15 cm dia x 15 cm
- Growth cycle for large boules is 1-2 months
 - >>> Production of substrates for ETM's alone would take ~1 year of a dedicated furnace once process is finalized
- Polishing cycle is also slow (example: single 15 cm piece at GO quoted at 6-8 month delivery time)
- Good news: Production costs approximately comparable with Heraeus fused silica
- LIGO working with Crystal Systems and SIOM

Future Directions

- Production Issues
 - >> Size is biggest challenge, but ability to produce sufficient number is still iffy
- Polishing
 - >> Need to determine ability to achieve adequate surface figure
- Understand limits to Q (fundamental limit or technical limit)
 - >> Including how to suspend and control without degrading intrinsic Q
- Issues specific to ITM's
 - >> Source of absorption and its control
 - >> Birefringence, homogeneity,