Little Things That Can Increase Thermal Noise

-a talk in two parts

Phil Willems LIGO Seminar, Oct. 6 1998

Magnet Losses Revisited

Magnet Loss Measurements

1994: Gillespie & Raab 1996: Carri

1997: Kawamura & Hazel

1998: current work

why do this measurement once again?

Indium or Epoxy?

Epoxy:

-strong bonding (LIGO qualified)

- -not very vacuum compatible
- -proven low-loss attachment technique

Indium:

-strong bonding (but still needs LIGO qualification)

-vacuum compatible

-???

Ringdown of 31.0 kHz mode w/o magnets

Table 1: Measured Mechanical Losses

Mode Freq (kHz)	ϕ , without magnets $(x10^{-7})$	ϕ , with magnets $(x10^{-7})$
9.31	71.9	102
14.43	1.02	1.04
22.22	19.2	19.6
22.49	.775	1.31
26.11	2.86	3.45
27.28	3.65	5.92
30.07	.637	1.66
31.02	.565	1.33
31.99	1.20	2.46
35.41	.529	.78
40.76	.787	1.75
48.13	1.12	33

Magnet-induced losses in Pathfinder test mass

- indium-bonded dumbbell standoffs (current work)
- epoxied cylindrical standoffs (Carri)
- ▼ epoxied dumbbell standoffs (Hazel & Kawamura)

Current Status of Indium Bonding and Magnet Losses

- 1. Indium bonding losses are acceptably low for LIGO
- 2. Bonding strength is currently being characterized (magnet/indium bond is the weak link)
- 3. New fixturing for attaching magnets being designed (big advantage: indium 'cures' instantly, unlike epoxy, saving lots of time)

Mukund Thattai; Cornell, Caltech SURF Phil Willems; Caltech Uniform wire suspension is well understood, and probably ideal; losses are concentrated at ends according to the equation

$$\Phi = \Phi_{\text{mat}} \frac{2}{kL} \left(1 + \frac{(n\pi)^2}{2kL}\right)$$
n=number of excited wire mode
k=wire elastic wavenumber

Note that fibers should be narrow at the ends to minimize loss. Yet actual fused silica fibers taper to increasing diameter at the ends.

The Physical Model

(with apologies to Gonzalez and Saulson)

$$-E[I(z) x'''' + 2I'(z) x''' + I''(z) x'] + Tx'' = -\rho(z) \omega^{2} x$$

string equation of motion

$$x(0)=x'(0)=0$$

boundary conditions, top of string

$$E[I(L)x(L)'''+I'(L)x''(L)]-Tx'(L) = -\omega^2 M x_M$$

mass force equation

$$-E[I(L)x''(L)+hI'(L)x''(L)+hI(L)x'''(L)]=-J\omega^{2}\Phi$$

mass torque equation

Test: is Q inverse to loss factor phi?

Diameter Profiles Used in the Simulation

Linear:

-heating zone grows half as fast as fiber is pulled (described by Birks et al.)
-useful approximation since all tapers shown are linear to first order

Exponential:

-heating zone constant as fiber is pulled-approximation of handpulled fibers

Inverse Square Root:

-rod fed into heating zone at low speed and fiber drawn out at high speed -approximation of draw tower fibers

Q-reduction vs. taper length

Q-reduction vs. taper depth

Pendulum thermal noise spectra

Pendulum thermal noise spectra

Possible Improvements

- a) find a way to clamp fused silica fibers in the same manner as metal wires
- b) use very narrow heating zones to draw fibers (e.g. carbon dioxide lasers)
- c) use torch multipass technique to tailor fiber profile

Page 1

Note 1, Linda Turner, 11/02/98 11:44:09 AM LIGO-G980123-00-D