+140-6980125-00-R

ASTROPHYSICAL MOTIVATIONS FOR LIGO LABORATORY'S ADVANCED R&D

Kip S. Thorne, Caltech

Presentation to NSF panel to review the LIGO Advanced R&D Proposal, at Arlington, VA, 22 January 1998

SENSITIVITY TO GW BURSTS (11 hrms)

SENSITIVITY TO GW BURSTS (11 h_{rms})

INITIAL SEARCH (2002-2003): Plausible Sources

(most optimistic: 16Mpc; best estimate: 150Mpc)

15BH/15BH inspiral @ 200Mpc (= best published estimate for globular clusters)

Merger of BH/BH Binary with masses 30 to 200, @ 500Mpc (highly uncertain)

Nonaxisymmetric supernova @ 15Mpc

1 msec pulsars in our Galaxy with ellipticity 10^{-6}

Stochastic background at $3x10^{-7}$ of closure energy

NS/NS inspiral @ 300Mpc (best estimate: 150Mpc) 15BH/15BH inspiral @ 2000Mpc

Merger of BH/BH Binary with masses 30 to 200, @ z=1Nonaxisym supernova @ 150Mpc; NS boiling in our galaxy 1 msec pulsars in our Galaxy with ellipticity $2x10^{-7}$ Stochastic background at $3x10^{-9}$ of closure energy

Comparison with Enhanced Detectors:

Broad-Band:

30-fold increase in event rates & stochastic energy much greater accuracies of information extraction study5x heavier black holes

Narrow-Band:

Pulsar Searches 100x farther, or 100x smaller ellipticity Stochastic Background 100x lower energy Studies of NS/NS merger (measure NS eqn of state)

LIGO Laboratory Advanced R&D Proposal

Gary Sanders LIGO Laboratory

LIGO-G980006-00-M

Presenters

- Astrophysical Motivations for LIGO Lab Advanced R&D Thorne (20 min)
- Overview of Proposed Program Sanders (15 min)
- Stochastic Research/Thermal Noise Interferometer Shoemaker (40 min)
- Higher Laser Power, Core Optics for Higher Power, Sapphire for Core Optics- Whitcomb (30 min)
- Advanced Photodetectors, Adaptive Thermal Compensation Zucker (20 min)
- Advanced Controls Research Coyne (15 min)
- Resonant Sideband Extraction Mason (15 min)
- Resource Overview Lindquist (10 min)
- LIGO Scientific Collaboration Perspective Weiss (15 minutes)

Resubmittal

- Same 5 year period of performance as proposed last year
- Same programmatic goal of advanced subsystems and detectors
 - » But LSC is more mature so LIGO II is the explicit goal
- Roughly same level of effort as proposed last year
- Several new tasks
 - » photodiode research
 - » active compensation
 - » advanced controls

FY1997

- Original FY1997 request was for \$1.7 M
- Granted \$800K
- Funds received in July
- To date, tasks initiated are:
 - » sapphire
 - » Thermal Noise Interferometer
 - » Resonant Sideband Extraction experiment

LIGO Funding by NSF Task and by Year

.

Fiscal Year	Construction	R&D	Operations	Advanced R&D	Total	
Thru 1994	35.9	11.2			47.1	
1995	85.0	4.0			89.0	
1996	70.0	2.4			72.4	
1997	55.0	1.6	0.3	0.8	57.7	
1998	26.2	0.9	7.3	2.7	37.0	
1999			20.9	2.8	23.7	
2000		. <u></u>	21.1	2.9	24.0	
2001			19.1 (10 months)	2.9	22.0	
Total	272.1	20.0	68.7	12.1	372.9	
All funds shown in 'then-year' \$M						

LIGO CO-INVESTIGATORS

Professor Barry Barish Principal Investigator

Dr. Gary Sanders Co-Principal Investigator Advanced R&D Coordinator

Dr. Mark Barton GariLynn Billingsley Core Optics Task Leader (Section 6) Dr. Eric Black Dr. James Blackburn Brett Bochner Dr. Jordan Camp Dr. Mark Coles **Dr. Dennis Coyne** Advanced Controls Task Leader (Section 10) Peter Csatorday Dr. Peter Fritschel Dr. William Kells Sapphire Optics Task Leader (Section 7) Dr. Peter King Dr. Albert Lazzarini **Professor Ken Libbrecht** Thermal Noise/Resonant Sideband Extraction Task Leader (Sections 4, 11) Dr. Jennifer Logan James Mason Dr. Ken Mason Dr. Walid Majid Dr. Alexandru Marin Dr. Nergis Mavalvala Dr. Mark Pratt Dr. Thomas Prince Dr. Frederick Raab Dr. Haisheng Rong Dr. Richard Savage Dr. Stefan Seel Dr. David Shoemaker Stochastic Noise Research Task Leader (Section 4) Dr. Lisa Sievers Dr. Daniel Sigg Dr. Serap Tilav Dr. Brent Ware **Professor Rainer Weiss** Dr. Stanley Whitcomb High Power Laser Task Leader (Section 5) Dr. Hiroaki Yamamoto Dr. Michael Zucker Photodetector and Thermal Compensation Task Leader (Sections 8, 9)

Figure 4: The improvements in h_{rms} associated with the steps outlined in the proposed program and resulting in the parameters given in Table 2. The logic of the steps is determined by the assumption that compact binary coalescences are the most likely source to be detected, hence the importance of improving the sensitivity near 100 Hz. The improvements associated with the double suspension, reduction in the thermal noise and increase in the test mass (steps 1, 2 and 5) are tightly coupled.

Figure 2: The h_{rms} noise envelopes for the initial LIGO (LIGO I) detector and a detector (LIGO II) that has been enhanced by the application of the advanced subsystems described in the text and Figure 4 on page 11. The strategy for this specific set of steps is to improve the sensitivity near 100 Hz and thereby the detection of NS/NS coalescences. The curve labeled advanced broad band is the noise in a future detector (beyond LIGO II) using 300kg test masses and 5 ppm loss mirrors illuminated by a 100 watt 1 micron laser. The line labeled radiation pressure is the limiting noise for this advanced detector at low frequencies. By reducing the circulating power in the interferometer the noise below 100 Hz can brought to the lower curve limited by gravity gradients and the standard quantum limit but with an increase in the sensing noise above 100 Hz. The assumption has been made that the research in advanced detectors has resulted in bringing the thermal and seismic noise below the other limiting terms.

Figure 3: The amplitude spectral strain noise expressed as an equivalent h(f) to characterize the detector. The detection "signal to noise" is determined from this quantity when the source spectrum is known. The noise power in the detection of a particular source is calculated by integrating $h(f)^2$ as a function of frequency through the optimal filter for the source. The curves represent the same detectors as those in Figure 2 except that a solid curve has been added to show the noise envelope for advanced narrow band detectors with a sensing bandwidth of 1 Hz associated with the assumption of 5 ppm mirrors used in a 4 km long interferometer arm.

The Advanced Detector R&D Program outlined below addresses the desire for higher sensitivity detectors in two ways: through upgrades to the initial interferometers (called *advanced sub-systems (LIGO II)*) that can be made without major redesign of the interferometer and through *advanced detectors (beyond LIGO II)* that require fundamental changes to the interferometer:

- Advanced subsystems are intended to address a single performance limitation in the initial interferometers by replacing a single subsystem in the LIGO interferometers with an improved design. Examples include higher power lasers, new test mass suspensions, or new test mass materials. These lead to the LIGO II detector.
- Advanced detectors are currently less mature in their development, but offer significant

Figure 5: Components of the error budget for the enhanced LIGO interferometers. Refer to Table 2 for interferometer parameters

Table 2: Sample detector	parameters with a	advanced su	b-systems
--------------------------	-------------------	-------------	-----------

parameter	sample enhanced value		
Laser power	100 W		
contrast defect	< 1 x 10 ⁻³		
mirror loss	2 x 10 ⁻⁵		
arm cavity storage time	880 µ sec		
mirror mass	30 kg		
mirror internal Q	3×10^8		
Pendulum Q (double pendulum)	1×10^8		
seismic isolation	T(100Hz) = -120 dB		

.

Research addressing Stochastic Forces

D. Shoemaker 22 January 98

Scope

- thermal noise
- excesses beyond thermal noise
- seismic noise
- control systems for the mechanical aspects of the interferometer

Strategy

2004: First opportunity for significant changes

- first science run finishing in ~2003
- allows a ~5 year cycle of research, development, engineering, test

Low-Frequency Performance goals dictated by thermal noise

- target materials (quartz, sapphire) loss characterized
- will do best effort but bare material Qs known
- isolation goal: let optimistic level for thermal noise dominate
- only moderate improvements in isolation required

Leads to near-term plan for research:

- model and plan the system: requirements, trades
- research means to handle and assemble quartz/sapphire test masses, characterize the results in terms of noise performance
- leave LIGO I passive isolation in place, augmented by...
- double-pendulum suspension, and
- modest active isolation system

Long-term strategy: gravity gradient limited performance

- not a specific focus of this research proposal
- interest in LIGO and community for aggressive application of sensing/servo techniques, but all approaches to be considered

Performance goals and limits

Roadmap

Long history of suspension/isolation/thermal noise

- significant effort at MIT, Caltech, other institutions
- plan to build on and collaborate with all in field
- in particular, close Ligo Science Collaboration (LSC) effort

LIGO-G980005-00-D

Requirements

- point of departure: Advanced Subsystem LIGO sensitivity curve
- individual technical noise sources to be re-estimated

Environment

- site seismic noise: correlations, extrema, stationarity, drifts
- acoustic noise, other couplings found to be important

Interfaces and inter-subsystem trades

• present passive stack; coarse actuators; optics; acquisition

Thermal Noise research

Development of fused-silica-fiber pulling technology

- acquisition and 'tuning' of commercial system
- tests of Q and strength

Direct measurement of thermal/excess noise

- special-purpose Thermal Noise Interferometer
- focussed on internal thermal/excess noise of substrates

- will allow tests of partial suspension prototypes
- materials and techniques to be explored

Thermal Noise Interferometer

Configuration

- short measurement cavity, long reference cavity
- LIGO-like passive stack (from Phase Noise Ifo)
- common-mode mounting of test masses

Suspension Change from initial LIGO single suspension Advantages of double pendulum Initial LIGO single suspension Initial LI

improved seismic isolation

Critical design questions

test mass mirror

- material for test mass (sapphire?)
- material for suspension fibers (quartz?)

recoil mass

electric field controller

- attachment means for fiber (silicate bonding? welding?)
- vertical compliance (Maraging steel? quartz coil springs?)
 - > required, due to earth's curvature, to realize advantages

Prototypes for test in TNI, and MIT Test Ifo to be developed

• considerable interaction with collaborators

Active Seismic Isolation

Plan to re-use the bulk of LIGO I passive isolation system

- with double pendulum, allows thermal noise to dominate in GW band
- considerable cost/complexity savings if incorporated in new design
- will be well-understood and characterized system
- changes (e.g., damping of springs) if indicated by experience

Active isolation system

- Objective: to reduce further required dynamic range in suspension; goal: factor 30 reduction, 0.1-10 Hz
- target design is (principally) external to vacuum
 - > may include sensors in vacuum to control stack dynamics
- MIT contributing commercial system for test
- Collaboration with JILA to exploit, improve, and integrate

Control systems and actuators/sensors

- attempt to eliminate actuators on test mass through acquisition cleverness and trades between isolation/suspension system
- modeling to use LIGO I Length/Angle models as basis
- if needed, develop electrostatic actuators for test mass

Characterization of LIGO I suspensions

• understand what we wish to do differently; cross couplings

System tests

LIGO/Community facility for end-to-end full-scale testing

- tests of isolation/suspension systems, thermal noise strategies
- final qualification of such systems prior to LIGO site installation
- flexible envelope, also for optics studies
- fully operational in '99, for testing of double suspension system

Schedule

Principal activities in FY 98:

- modeling of the system and parts thereof: requirements, environment, interfaces, configuration (all LSC members)
- characterization of the LIGO I suspensions on-site (PSU)
- start of work on active isolation systems (as-is tests) (JILA)
- Thermal Noise Ifo construction, first operation (MSU)
- start of fabrication of passive isolation for MIT Test Ifo
- (moving of MIT Lab and installation of Test Ifo Vacuum System)

Principal activities in FY 99:

- improvements to active seismic isolation (JILA, Stanford)
- vertical compliance development and test (GEO)
- materials and attachment means (Syracuse, MSU)
- Thermal Noise Ifo results (MSU)
- completion of MIT Test Ifo isolation, some interferometry
- first prototypes: development and test (All LSC members)

Principal activities in FY2000-2001:

- System tests of individual suspensions
- System tests of complete interferometer

ADVANCED CONTROL TECHNIQUES: MOTIVATION

Challenging detector availability goals have been established for the LIGO observatories:

>> Single interferometer operations > 90% of the time with minimum of 40 hr. continuous lock periods

>>Double coincidences > 85% time and triple coincidences > 75% time with 100 hr. minimum continuous lock periods

• 40 m prototype experience:

>>Limited periods of continuous interferometer lock will be the main contributor to detector down-time (40m prototype lock durations vary from seconds to a few hours)

---Control system instabilities caused by drifts in the interferometer system parameters

-Displacement noise events which kick the interferometer out of lock

LIGO-G97____-00-M

ADVANCED CONTROL TECHNIQUES: BACKGROUND

LIGO has frequency, length and alignment servo-control loops

>>The optical model for the length control system is a 4x4 matrix of transfer functions:

$$H_{ij}(s) = G_{ij} \cdot \frac{\left(1 + \frac{s}{z_{ij}}\right)}{\left(1 + \frac{s}{p_{ij}}\right)}$$

The 4 degrees of freedom are the common mode arm cavity length L+, the differential arm cavity length L-, the Michelson difference I-, and the Michelson common mode length I+

ADVANCED CONTROL TECHNIQUES: BACKGROUND (continued)

- Potential hardware imperfections, model errors, unknowns or parameters subject to drift which could effect control system robustness include:
 - >>Beamsplitter reflectivity \neq 50%
 - >>Mixer phase error
 - >>Deviations from resonance
 - >>Visibility variation
 - >>Fabry-Perot cavity input and end test mass absorption (resulting in radius of curvature changes)
 - >>Sensor & actuator cross-talk (optical, mechanical & electrical)
 - >>Alignment/length Coupling
 - >>Modulation depth & phase variation

ADVANCED CONTROL TECHNIQUES: STRATEGY

- System identification will be used in conjunction with subsystem diagnostic and measurement techniques to update our understanding of the system and its control
- Once the system susceptibilities are understood, an adaptive controller can be formulated to compensate
- SID and Adaptive Control are mature technologies; The application to Interferometry is unique

ADVANCED CONTROL TECHNIQUES: SYSTEM IDENTIFICATION

 System Identification (SID) is an empirical approach to modeling interferometer system dynamics

>>Non-parametric identification (i.e. frequency response estimation)

>>Parametric system models (e.g. state space representation)

- For LIGO we seek a <u>recursive</u>, real-time <u>parameter identification</u> of the multiinput/multi-output optical response of the interferometer in <u>Detection Mode</u>:
- Many techniques are available and will be explored; Potential candidates include:
 - Generalized Least Squares and Maximum Likelihood Estimators (e.g. the Prediction Error Method) are computationally simple
 - >>Observer/Kalman Filter Identification (OKID) -- time domain based, can be extended to identification of closed loop effective controller/observer combination (Observer Controller Identification, OCID)
 - State-Space Frequency Domain (SSFD) identification -- frequency domain based (can use spectrum analyzers)

ADVANCED CONTROL TECHNIQUES: ADAPTIVE CONTROL

- Adaptive Control can improve sensitivity while maintaining robustness to disturbances and plant variations
- Adaptive control time scales:

>>milliseconds for the ordinary feedback

>>many minutes for updating the control parameters and performing SID

Possible adaptive control algorithm: Model Reference Adaptive Control

Advanced R&D Review:

Lasers and Optics

S. Whitcomb 22 January 1998

LIGO

Outline

Higher Power Lasers
Improved Interferometer Optics
Sapphire Optics

LASERS AND OPTICS High Frequency Sensitivity

Improvements in shot noise due to:

- >>Higher laser power
- >>Lower loss optics
- >>Optics to handle higher power

HIGHER POWER LASER Initial LIGO Laser: 10 W Nd:YAG

- Development contract with Lightwave Electronics
- Goal: Develop 10 W diode-pumped Nd:YAG laser suitable for Initial LIGO

>>Single Frequency

>>Diffraction-Limited, Single Transverse Mode

>>Intensity and Frequency Stabilization

First unit delivered to LIGO at end of 1997

HIGHER POWER LASER Initial LIGO Laser: 10 W Nd:YAG

Double pass MOPA configuration adopted

- Commercial 700 mW NPRO used as master oscillator
- >>Very good beam profile
- >>Moderate efficiency and saturation

 New geometry for pumping gain elements

HIGHER POWER LASER 10 W MOPA Performance: Moderate Gain Saturation

LIGO-G980002-00-D

HIGHER POWER LASER Advanced LIGO Laser: Performance Goals

- Nd:YAG, or equivalent
- Diode-laser pumped
- Wavelength ~ 1 μ m
- 100 W output power

>>Single frequency, single transverse mode

Frequency and intensity control actuators

HIGHER POWER LASER Advanced LIGO Laser: Zig-zag Slab Geometry

 Rod geometries (used in LIGO 10 W laser) give high efficiency (good match to mode shape) but do not scale well to higher power

>>Thermal stresses introduce polarization losses

Zig-zag slap geometry

- >>Thermal gradient gives stress-induced birefringence aligned with polarization direction >> no increased loss
- >>Zig-zag path averages spatial variation in gain, etc. (at least over on dimension)
- Major question is configuration for optical extraction

HIGHER POWER LASER Advanced LIGO Laser: MOPA

- Proposed by Byer group (GALILEO/ Stanford)
- MOPA advantages, disadvantages
 - + Easily scalable to higher power mode volume not tied to resonator length
 - + Frequency control simple (applied to master oscillator)
 - + Can put electro-optic control elements in low power beam (prior to amplifier)
 - Extraction efficiency not as high as with oscillator (reduces efficiency, increases cost)
 - Possibility of parasitic oscillations or noise due to amplified spontaneous emission (ASE)
 - ? Beam quality
 - **?** High frequency noise

HIGHER POWER LASER Advanced LIGO Laser: Injection-Locked Oscillator

Injection-locked oscillator using stableunstable resonator

- + High efficiency
- + Gain saturation suppresses ASE
- Scaling to higher power (larger mode volume) requires "unconventional" resonator configuration
- Requires additional (simple) servo to lock power oscillator to master oscillator
- **?** Beam quality
- ? High frequency noise

Stable-unstable resonator

- >>Proposed by Munch group (ACIGA/Adelaide)
- >>Resonator is stable in direction, unstable in the perpendicular direction
- >>Uses variable transmission output coupler to control beam profile

HIGHER POWER LASER Work Plan

- Collaborate with GALILEO (Stanford) and ACIGA (Adelaide) in two step development
- LIGO responsibilities: requirements, testing

Milestones	Responsible	Date
Evaluate performance of 10 W LIGO laser	LIGO, GALILEO	3/98
Develop laser requirements for LIGO II interferometer	LIGO, ACIGA, GALILEO	7/98
Build 40 W stable-unstable resonator laser	ACIGA	12/98
Characterize 40 W stable-unstable resonator laser	ACIGA, LIGO	5/99
Build 40 W MOPA laser	GALILEO	12/98
Characterize 40 W MOPA laser	GALILEO, LIGO	5/99
Upgrade to 100 W stable-unstable resonator laser	ACIGA	12/00
Characterize 100 W stable-unstable resona- tor laser	ACIGA, LIGO	5/01
Build 100 W MOPA laser	GALILEO	6/00
Characterize 100 W MOPA laser	GALILEO, LIGO	12/00
Decision on LIGO II high power laser config- uration	All	9/01

IMPROVED OPTICS Optics for Initial LIGO: Results of Pathfinder Devel.

Polishing

>>Surface figure < 0.5 nm rms

>>Microroughness < 0.1 nm

>>Radius matching < 2%

Coating

>>Surface figure < 1 nm rms

>>Microroughness - presumed negligible

>>Radius change < 1% (!?)</pre>

Metrology

>>Just barely adequate!

>>Needs extension to 1 µm

;

NIST MEASUREMENT (1.75 nm RMS)

HDOS MEASUREMENT (1.58 nm RMS)

LIGO-G971167-00-D

IMPROVED OPTICS Optics for Advanced LIGO: Development Goals

Coating Uniformity

>>Pathfinder results meet initial LIGO requirements

>Improvement of (2-3) x seems possible; reduces (dominant) small angle scatter losses by (4-9) x

Substrate and coating absorption

>>Coordinate substrate/coating absorption measurements with analysis and vendor improvements

Metrology

>>Maintain and improve optical metrology capability at 1 μm

Other Issues

- >>High power damage?
- >>Contamination?
- >>Thermal lensing compensation
- >>In situ cleaning of optics

IMPROVED OPTICS Optics Development: Substrate Absorption

IMPROVED OPTICS Work Plan

 Most efforts scheduled to begin in1999 because of competing LIGO construction demands on equipment, contracts and staff

Milestones	Responsible	Date
Surface figure metrology < 0.1 nm rms	LIGO	6/00
Polishing Process: figure < 0.1 nm rms	LIGO/Industry	12/01
Coating uniformity metrology	LIGO	6/02
Coating Process: uniformity < 0.1 nm rms	LIGO/Industry	12/02
Coating Absorption metrology	LIGO	6/02
Coating Process: loss < 0.1 ppm	LIGO/Industry	12/02
Bulk absorption metrology	LIGO	1/00
Qualification of a full size piece of lensing compensation material	LIGO	1/01
Damage test capability	LIGO	1/00
In situ cleaning method identified	LIGO	12/01

SAPPHIRE OPTICS Why Sapphire for LIGO Interferometer Optics?

Рис. 8. Схема криостата для исследования механических резонаторов при низких температурах.

Измерение добротности резонатора осуществлялось по времени затухания его свободных колебаний. Возбуждение

и регистрация упругих колебаний в резонаторе производились емкостными преобразователями. Температура резонатора определялась по значению собственной частоты его колебаний. предварительно проградуированной по термопаре медь — константан и термометру на основе угольного сопротивления. При этом термопара и термометр присоединялись непосредственно К кристаллу только во время предварительной градуировки, так что исключался механический резоконтакт

Рис. 9. Рассчитанные (кривые 1 и 2) и измеренная (кривая 3) температурные зависимости Q⁻¹ резонатора из сапфира с собственной частотой 38 кГц.

натора с ними при проведении измерений добротности.

SAPPHIRE OPTICS Demonstrated Capabilities for LIGO Optics

Single crystals grown up to 65 kg

>>Crystal orientation not most desirable for LIGO

>>Largest pieces have typically shown poorer optical quality

Optical Homogeneity ~3 x 10⁻⁷ rms

>>~5x worse than best SiO₂

>>Limited measurements on 5 cm pieces

>>May be measurement limited, may be good enough

Can be "super-polished" (<1 Å microroughness)

>>No tests of large scale surface figure at 1 nm level

Low absorption at 1.06 μm (~3 ppm/cm)

>Comparable to best SiO₂, but higher thermal conductivity reduces thermal lensing in transmission

SAPPHIRE OPTICS Absorption Testing/Development

 Pioneering survey at 1.06 μm by Blair, Cleva, and Man (UWA and Virgo)

Supplier	Absorption (ppm/cm)
Union Carbide	$16-22\pm 2$
Crystal Systems (CSI Standard)	55 ± 4
Research Institute of Synthetic Crystals	200 ± 20
Melles-Griot	$11 - 16 \pm 2$
Crystal Systems (CSI White)	3.3 ± 0.2

- No obvious correlation with growth method or known impurities
- Have already obtained additional CSI White samples obtained to test consistency
- Glow Discharge Mass Spectroscopy initiated to characterize impurities

SAPPHIRE OPTICS Growth of Suitable Blanks: Approach

- Difficulty is that preferred orientation ("0°" = C axis perpendicular to optic surface) is a poor growth direction
- Two potential suppliers/growth techniques identified
 - >>Crystal Systems Inc. Heat Exchanger Method (HEM)
 - >>Shanghai Institute of Fine Mechanics (SIOM) Directional Thermal Gradient Technique (TGT)
- Working with both suppliers to grow and evaluate test pieces of 0° material
 - >>Early CSI 32 cm diameter growth runs gave poor optical quality
 - >>First SIOM test piece (10 cm diameter) to be delivered in early 1998

SAPPHIRE OPTICS Optical Fabrication Development

- Polishing trials by CSIRO and General Optics on 15 cm x 6 cm 0° sapphire blanks
 - >>Two blanks purchased by LIGO
 - >>General Optics has started initial polishing steps
 - >>CSIRO waiting for break in current workload
 - >>LIGO, CSIRO to test for surface errors
 - Issues include scratches and point defects due to hardness of sapphire

Coating to be done at REO after completion of polishing

- >>REO has experience coating sapphire in smaller sizes
- >Issues include nonisotropic (and large) thermal expansion coefficient
- >>Testing of coating suitability to be done by LIGO

SAPPHIRE OPTICS Attachments and Suspensions for Maximum Q

- Primary interest and expertise of University of Western Australia
- UWA group to develop apparatus for measuring internal mode Q's by excitation/ ringdown
 - >>Test Catherine wheel support for maximum Q test
 - >>Investigate Nb flexures and brazed attachments

SAPPHIRE OPTICS Work Plan

Milestone	Responsible	Date
Fully develop Pathfinder quality material	LIGO, SIOM,	mid 98
	C-S,	late 99
Select adequate material source(s). Produce additional samples if needed	LIGO, VIRGO	early 00
Demonstrate polish to Pathfinder specs. (half size	CSIRO,LIGO,V	early 98
blanks)	IRGO	early 99
Select adequate polishers	LIGO, VIRGO	mid 99
Demonstrate HR coating to Pathfinder specs	REO, LIGO,	late 98
	VIRGO	early 99
Characterize Q test bed @ > 4 x108 level	UWA	mid 98
Set upper limit Q to candidate source material	UWA, LIGO	early 99
Select candidate low Q attachment technique	UWA, LIGO, VIRGO	mid 00
Produce (2) full size blanks of Phase I selected material	selected source, LIGO	early 01
Preliminary test full size blanks	UWA, LIGO, VIRGO	mid 01
Integrate suspension attachments with Adv. SUS	UWA, LIGO	early 02
Polish and coat (4 sides)	REO, vendor, LIGO	late 02
Final measurements (as suspended Q)	LIGO, VIRGO, UWA	mid 03

High-Power Photodetectors Adaptive Thermal Compensation of Core Optics

LIGO Advanced R&D Proposal Review January 22, 1998

M. E. Zucker

LIGO M.I.T. Advanced R&D Team

High-Power Photodetectors for Advanced LIGO

- LIGO I Photodetector program has tested and identified InGaAs devices which meet initial detector needs:
 - 4 in parallel can handle ~ 0.6W CW at "dark port"
 - Can handle $\Delta U \sim 3$ J transient on loss of lock (using lossy EO shutter)
 - Quantum efficiency ϵ ~ 83% is acceptable
 - backscatter BRDF ~ 10⁻⁴/sr is below LIGO I phase noise limit
 - SNR (~1/R_dC_j) is adequate (0.1 * shot noise)
- BUT: Just barely!

LIGO I Photodetector Performance

RF response vs. incident power, beam area 0.68 mm², diode dia. 2.0 mm

RF response vs. beam position, 2.0 mm dia. diode

PD Specs Scaled to LIGO II Power and Sensitivity

Parameter	LIGO I	LIGO II	Current design
Steady-state power	0.6 W	3.0 W ^a	0.75 W
Transient damage	3 J / 10 ms	30 J / 10 ms	3 J / 10 ms
Signal/Noise	1.4 x 10 ¹⁰ Hz ^{1/2}	3.1 x 10 ¹⁰ Hz ^{1/2}	1.5 x 10 ¹⁰ Hz ^{1/2}
Quantum efficiency	80%	90%	83%
Spatial uniformity	1% RMS	0.1% RMS	1% RMS
Surface backscatter	10 ⁻⁴ /sr	10 ⁻⁵ /sr ^b	< 10 ⁻⁴ /sr

a. Assuming a factor of two improvement in contrast defect

b. Assuming comparable active detector area.

- Fortunately, current device limits are not intrinsic:
 - packaging & lead bonding impose artificial thermal limit
 - much better surface qualities readily achieved with InGaAs
 - R_d, C_i and thermal properties limited by design of ohmic contact

High-power photodetector research program

- Device physics & engineering research (Stanford)
- Enhanced overload protection (U. Fla.)
- Device testing, integration and interferometer trial (LIGO)
 - backscatter, thermal impedance, uniformity measurements
 - suppressed-carrier modulation testing
 - pulsed power damage threshold characterization
 - optical/mechanical/electronics integration & prototype trials
- Device technology transfer to industrial partners (All)

Photodetector Development Timetable

Milestone	Responsibility	Target
LIGO II detector requirements adopted	LIGO	12/98
Initial custom device fab & characterization	Stanford	3/99
CW suppressed-carrier interferometer on-line	LIGO	3/99
Second stage custom devices fab/char	Stanford	10/99
Pulsed damage test facility on-line	LIGO	3/00
Transient protection prototype test	U. Florida	3/00
Initial industrial prototype device production	Stanford	8/00
Characterize industrial prototype devices	LIGO/Stanford	11/00
Engineering design of prototype assembly	LIGO	3/01
Final industrial production run	Stanford	8/01
Characterize final industrial devices	LIGO/Stanford	11/01
Assembly/bench test of engineering prototype	LIGO/Stanford/U. Fla.	12/01
Integration test on suspended interferometer	LIGO. Stanford/U. Fla.	3/02

Adaptive Core Optics for Advanced LIGO

- Problem: LIGO I sees thermal effects at 10 W laser power.¹
 > 100 W required for "Advanced" shot noise sensitivity.
- Several thermal effects foreseen:
 - cavity mode distortion --> poor coupling
 - differential cavity mode mismatch --> contrast defect
 - recycling cavity sideband loss for power-recycled Schnupp scheme
- Several strategies proposed:
 - Insensitive configuration (RSE), readout (DRSB, NRSB)
 - lower bulk- and surface-loss, CTE, dN/dT and higher κ_{th} optics
 - Adaptive Core Optics

^{1.} Recycling mirror curvature specifications must counteract calculated ITM thermal lens to avoid significant performance penalty.

Research Program

- Modeling
 - Couple quasi-static thermal FEA with optical mode propagation
- Sensing research
 - Modified Schack-Hartmann sensors
 - "Super Wavefront Sensor" (SWFS)
 - > "bull's eye" RF detectors (prototype under development at UF)
 - Dithering & synchronous image processing
 - Dead reckoning (!) -- thermal inputs are stable, time constants very long
- Actuation research
 - scanned auxiliary ('heater') laser (e.g., CO₂; highly general, "brute force")
 - radiative coupling control (e.g., filaments & low- ε shields; "finesse")

Thermal Actuation Concepts

Preliminary result: 1-d radiative loading from a circular filament¹

1. R. Weiss, "Note on thermal compensation of thermal lensing by mirrors" (12/97)

Adaptive Core Optics Timetable

Milestone	
Coupled thermal/optical model development	9/99
Test interferometer construction	3/00
Sensor prototype construction & test	9/00
Radiative coupling actuator prototype test	3/01
Scanning actuator prototype test	9/01
Control algorithm development	6/02
Loop closure on test interferometer	9/02
Engineering design for suspended interferometer test	6/03
Suspended interferometer test	10/03

ADVANCED CONTROL TECHNIQUES: MOTIVATION

Challenging detector availability goals have been established for the LIGO observatories:

>> Single interferometer operations > 90% of the time with minimum of 40 hr. continuous lock periods

>>Double coincidences > 85% time and triple coincidences > 75% time with 100 hr. minimum continuous lock periods

40 m prototype experience:

>>Limited periods of continuous interferometer lock will be the main contributor to detector down-time (40m prototype lock durations vary from seconds to a few hours)

---Control system instabilities caused by drifts in the interferometer system parameters

-Displacement noise events which kick the interferometer out of lock

ADVANCED CONTROL TECHNIQUES: BACKGROUND

LIGO has frequency, length and alignment servo-control loops

>>The optical model for the length control system is a 4x4 matrix of transfer functions:

$$H_{ij}(s) = G_{ij} \cdot \frac{\left(1 + \frac{s}{z_{ij}}\right)}{\left(1 + \frac{s}{p_{ij}}\right)}$$

The 4 degrees of freedom are the common mode arm cavity length L_{+} , the differential arm cavity length L-, the Michelson difference I-, and the Michelson common mode length I+

ADVANCED CONTROL TECHNIQUES: BACKGROUND (continued)

- Potential hardware imperfections, model errors, unknowns or parameters subject to drift which could effect control system robustness include:
 - >>Beamsplitter reflectivity \neq 50%
 - >>Mixer phase error
 - >>Deviations from resonance
 - >>Visibility variation
 - >>Fabry-Perot cavity input and end test mass absorption (resulting in radius of curvature changes)
 - >>Sensor & actuator cross-talk (optical, mechanical & electrical)
 - >>Alignment/length Coupling
 - >>Modulation depth & phase variation

ADVANCED CONTROL TECHNIQUES: STRATEGY

- System identification will be used in conjunction with subsystem diagnostic and measurement techniques to update our understanding of the system and its control
- Once the system susceptibilities are understood, an adaptive controller can be formulated to compensate
- SID and Adaptive Control are mature technologies; The application to Interferometry is unique

ADVANCED CONTROL TECHNIQUES: SYSTEM IDENTIFICATION

 System Identification (SID) is an empirical approach to modeling interferometer system dynamics

>>Non-parametric identification (i.e. frequency response estimation)

>>Parametric system models (e.g. state space representation)

- For LIGO we seek a <u>recursive</u>, real-time <u>parameter identification</u> of the multiinput/multi-output optical response of the interferometer in <u>Detection Mode</u>:
- Many techniques are available and will be explored; Potential candidates include:
 - Generalized Least Squares and Maximum Likelihood Estimators (e.g. the Prediction Error Method) are computationally simple
 - >>Observer/Kalman Filter Identification (OKID) -- time domain based, can be extended to identification of closed loop effective controller/observer combination (Observer Controller Identification, OCID)
 - State-Space Frequency Domain (SSFD) identification -- frequency domain based (can use spectrum analyzers)

ADVANCED CONTROL TECHNIQUES: ADAPTIVE CONTROL

- Adaptive Control can improve sensitivity while maintaining robustness to disturbances and plant variations
- Adaptive control time scales:

>>milliseconds for the ordinary feedback

>>many minutes for updating the control parameters and performing SID

Possible adaptive control algorithm: Model Reference Adaptive Control

ADVANCED CONTROL TECHNIQUES: COLLABORATORS & RESPONSIBILITIES

- Stanford Univ. plans to explore system identification and adaptive control on advanced seismic isolation and suspension subsystems
- LIGO will concentrate on identification and control (length, alignment and frequency) of the optical plant for a power recycled configuration

GEO plans to explore adaptive control for autonomous and tele-remote operation

ADVANCED CONTROL TECHNIQUES: WORK PLAN

• System Identification:

The 40 m prototype will be used as the principal testbed for different SID schemes (ETF as secondary testbed for single cavity length/alignment control)

>>Sequence:

- 1. Investigate and categorize events/sources that unlock the interferometer
- 2. SID for four length loops separately to identify model parameters (poles, zeros and gains)
- 3. Length system as a Multi-Input Multi-Output (MIMO) system, including cross-couplings between the loops
- 4. Establish whether ambient, in-situ, stochastic excitation is sufficient for determining the model parameters with required accuracy -- or establish calibrated external stimulus requirements/design
- 5. SID for wavefront sensor based alignment system (MIMO system)
- 6. SID for combined length and alignment system
- 7. SID for frequency control system
- 8. SID for entire system

>>Off-line SID can be accommodated with the current 40 m data acquisition (DAQS) system

>>The 40 m DAQS can also be used, with additional real-time software & hardware (VME processor and DSP), to perform recursive SID

>>Once an on-line method has been tested and verified on the 40 m prototype it will then be adapted to LIGO (add IO length and alignment control)

ADVANCED CONTROL TECHNIQUES: WORK PLAN (continued)

Adaptive Control:

- >> The 40 m prototype will serve as a testbed
- >> Control will be made adaptive, where beneficial, based upon analysis of SID results
- >> Requires the planned 40 m electronics retrofit with "LIGO-like", VME-based, digital controls
- >> Computation will be implemented on another dedicated VME processor with an associated Digital Signal Processor (DSP), networking board and reflective memory
- >> Once the adaptive control is demonstrated to improve 40m prototype performance, it will be ported, with necessary changes, to the initial LIGO interferometer system
- The performance of the system in terms of availability (increased lock acquisition time) and decreased noise level will be compared in a series of long duration (order of a week) data runs

Milestone	Target
SID application to 40m	6/99
Adaptive Control application to 40m	6/00
SID application to LIGO	12/99
Adaptive Control application to LIGO	6/01

Advanced control plan milestones and dates

Resonant Sideband Extraction Fixed Mass Interferometer

James Mason

January 22, 1998

- A promising optical configuration for enhanced LIGO
- Features!

>>Higher storage time for carrier light in the arm cavities

- Less or no power recycling necessary
- Reduced thermal load on the beamsplitter

- Possible elimination of the optics and electronics for control of the recycling degree of freedom

>>Detector response is tunable

- Narrow-band, improved sensitivity about a frequency of interest possible with appropriate choice of optical parameters

Resonant Sideband Extraction

• Addition of mirror at output port

>>Forms a coupled cavity system for the signal sidebands

- Output mirror reflectivity and output cavity length (phase) used to tune detector transfer function

- RSE uses output cavity to lower storage time for the signal sidebands by making the output cavity resonant

- Changing phase in the output cavity changes the resonant frequency of the coupled cavity system

Previous Research, Planned Research

Proof of principle achieved

- >>Heinzel, Mizuno, et al., Phys. Lett. **A217** (1996)p.305
 - No power recycling
 - External modulation
 - Dither locking and pickoffs used to lock cavities

Issues to be investigated in this fixed mass interferometer experiment

>> Using frontal (Schnupp) modulation, develop a signal extraction scheme to control the 5 degrees of freedom

>>Investigate lock acquisition

>>Investigate the "tunability" of the interferometer

Long term goals

>>Comparison with a dual recycled table-top experiment being carried out in parallel at University of Florida

>>Downselect between these two schemes to be implemented in a suspended interferometer

Current Status

Work to date, in progress

>>Mathematical models used to predict behavior

>>Nominal set of optical parameters chosen

- Optical path lengths, mirror parameters, modulation frequencies

>>A signal extraction scheme has been worked out

- A second, which would facilitate filtering of the RF sidebands, is being explored

>>A lab has been set up

>>High bandwidth mirror mounts are being fabricated and tested

- Used in MIT's alignment FMI, first notable resonance at 60 kHz

What's next (short term)

>>Begin fabrication of photodiodes for signal extraction

>>Finish fabrication and characterization of mounts

>>Begin interferometer construction and testing

- Control system design and optics layout

NSF Review of LIGO Laboratory Advanced R&D Proposal

Resource Overview

Phil Lindquist

January 22, 1998

Summary Proposal Budget

				Funds R	Requested		
Line	Description	FY 1997	FY 1998	FY 1999	FY 2000	FY 2004	Total
Α	Senior Personnel						
B1	Post Doctoral	18,779	158,730	272,747	257,843	244,802	952,901
B2	Other Professionals	28,233	304,851	406,372	408,045	399,682	1,547,183
B3	Graduate Students	48,683	70,767	98,267	98,267	98,267	414,251
B4	Undergraduate Students						·
B5	Secretarial/Clerical						1
С	Fringe Benefits	14,751	115,895	169,780	166,472	161,121	628,019
	Total Salaries, Wages, Fringe	110,446	650,243	947,166	930,627	903,872	3,542,354
D	Equipment	460,685	1,124,100	749,500	670,500	749,000	3,753,785
Ε	Travel	26,348	67,090	72,962	83,759	83,759	333,918
F	Participant Costs						
G1	Materials & Supplies	30,176	100,538	161,391	169,465	163,114	624,684
G2	Publication Costs						·
G3	Consultant Services						
G4	Computer Services						
G5	Subawards	50,000	193,000	129,000	262,300	258,300	892,600
G6	Other (GRA Benefits)	32,280	56,613	78,613	78,613	78,613	324,732
Η	Total Direct	709,935	2,191,584	2,138,632	2,195,264	2,236,658	9,472,073
1	Indirect Costs	90,065	483,655	687,400	688,740	665,124	2,614,984
J	Total Direct and Indirect	800,000	2,675,239	2,826,032	2,884,004	2,901,782	12,087,057

Staffing Resource Requirements

		Full Time Equivalent (FTE)							
Line	Description	FY 1997 I	FY 1998 1	=`Y 119999	-Y 2000	-Y 2004	Fotel		
Α	Senior Personnel								
B1	Post Doctoral	0.42	3.55	6.10	5.77	5.48	21.32		
B2	Other Professionals	0.37	4.18	5.57	5.59	5.49	21.20		
B3	Graduate Students	2.59	3.86	5.36	5.36	5.36	22.53		
B4	Undergraduate Students								
B5	Secretarial/Clerical								
С	Total	3.38	.11/59	17.03	16.72	16.35	615 0/5		

.

Funding by Task

			Funds Re	equested		
Task:	FY 1997	FY 1998	FY 1999	FY 2000	EN7 2003	Total
Stochastic Noise Sources	126,749	923,238	868,638	711,638	865,638	3,495,901
Thermal Noise Interferometer	161,714	320,533	246,533	168,533	158,533	1,055,846
LasersHigh Power Laser	10,000	334,250	298,500	368,500	368,500	1,379,750
Core Optics Development	150,522	296,611	367,186	557,116	542,116	1,913,551
Sapphire Core Optics	128,405	327,863	267,842	331,842	313,246	1,369,198
Advanced Photodetectors	-	119,166	131,333	124,333	112,833	487,665
Adaptive Optics	-	-	108,333	99,333	99,833	307,499
Advanced Controls	-	17,560	211,750	196,792	115,167	541,269
Resonant Sideband Extractio	222,610	335,919	325,919	325,919	325,919	1,536,286
Total	800,000	2,675,140	2,826,034	2,884,006	2,901 785	12,086,965

Equipment Funding By Task and Fiscal Year

1	5	
ll ine	H J	
	-	

Sum of Total	FY					
Task	1997	1998	1999	2000	2001	Circled Voiel
1. STO	86,000	439	000 267 000		264,000	1,166,000
2. TNI	92,000	169	000 95 000	10.000		:. 316(6) (01010)
3. LAS		180	000	70.000	70,000	3,210,000
4. OPT	90.000	-95	159.000	3	2:3\0 (0)010	(8)2(9, 0(0)0)-
5. SAP	28,000	74	000	24,000	24,000	150,000
6. PDT		87	000 00 000	62,000	50,500	268,500
7. AOP			49,000	40,000	40,500	129,500
8. CTR			40,500	29,500		70,000
9. RSE	164,685	80	,000 70.000	70,000	70.000	454 685
Grand Total	460,685	1,124	,000 749,500	670,500	749,000	3,753,685

Task	FY	Line	Description	FTEs Dire	ct Benefits	GRAs	Overhead	Total
1. STO	1997	D	Data Acquisition System	83,00	0	,		83,000
1. STO	1997	D	Machining	3,00	00			3,000
1. STO	1998	D	Matlab	10,00				10,000
1. STO	1998	D	Instrumentation	50,00	00			50,000
1. STO	1998	D	BSC Isolation	379,00	00			379,000
1. STO	1999	D	Seismic Upgrades	30,00	00			30,000
1. STO	1999	D	Suspensions, Controllers, Optics					-
1. STO	1999	D	HAM Isolation	237,00	00			237,000
1. STO	2000	D	Prototyping Equipment	60,00	00			60,000
1. STO	2000	D	Seismic Upgrades	30,00	00			30,000
1. STO	2000	D	Vacuum Equipment	20,00	00			20,000
1. STO	2000	D	Suspensions, Controllers, Optics	-				-
1. STO	2001	D	Seismic Upgrades	40,00	00			40,000
1. STO	2001	D	Vacuum Equipment	10,00	00			10,000
1. STO	2001	D	Prototyping Equipment	40,00	00			40,000
1. STO	2001	D	Suspensions, Controllers, Optics	34,00	00			34,000
1. STO	2001	D	2nd Prototype - Suspensions, Controls, Optics	140,00	00			140,000
1. STO	Total							1,166,000

Advanced R&D Pror-sal Budgets Detail

Task	FY	Line	Description	FTEs	Direct	Benefits	GRAs	Overhead	Total
2. TNI	1997	D	700 mW NPRO Laser		32,000			-	32,000
2. TNI	1997	D	Optical Table (Synch Lab)		15,000			-	15,000
2. TNI	1997	D	Optics and General Lab Hardware		15,000			-	15,000
2. TNI	1997	D	PSL Cavity Mirrors		15,000			-	15,000
2. TNI	1997	D	PSL Electronics		5,000			-	5,000
2. TNI	1997	D	Soft Wall Clean Room		10,000			-	10,000
2. TNI	1998	D	Actuator Hardware		10,000				10,000
2. TNI	1998	D	Fiber Pulling Hardware		75,000				75,000
2. TNI	1998	D	Frame Machining		15,000				15,000
2. TNI	1998	D	High Purity Fused Silicon Suspension		5,000				5,000
2. TNI	1998	D	PSL Pre-mode Cleaner		8,000				8,000
2. TNI	1998	D	Reflective/Anti-reflective Coatings		10,000				10,000
2. TNI	1998	D	Test Masses and Suspensions		10,000				10,000
2. TNI	1998	D	Turbo Pump Stations		10,000				10,000
2. TNI	1998	D	Vacuum Accessories		8,000				8,000
2. TNI	1998	D	Vacuum System Moving		8,000				8,000
2. TNI	1998	D	Wavefront Sensing Hardware Electronics		5,000				5,000
2. TNI	1998	D	Wavefront Sensing Hardware Optics		5,000				5,000
2. TNI	1999	D	Data Acquisition Electronics		25,000				25,000
2. TNI	1999	D	In-vacuum Mounts		10,000				10,000
2. TNI	1999	D	Miscellaneous Optics		15,000				15,000
2. TNI	1999	D	Optics Mounts		5,000				5,000
2. TNI	1999	D	Pre-Amps, Oscilloscopes, RF Electronics		15,000				15,000
2. TNI	1999	D	Suspended Mode Cleaner Cavity		15,000				15,000
2. TNI	1999	D	Suspended Mode Cleaner Suspension		10,000				10,000
2. TNI	2000	D	Computer and Interface Hardware		5,000				5,000
2. TNI	2000	D	Miscellaneous Electronics		5,000				5,000
2. TNI 1	otal								366,000

Advanced R&D Proposal Budgets Detail

Task	FY	Line	Description	FTEs	Direct	Benefits	GRAs	Overhead	Total
3. LAS	1998	D	Lightwave 10 W Laser for Stanford MOPA		100,000			-	100,000
3. LAS	1998	D	Analyzer Cavity for Frequency Noise Measurem	ent	40,000				40,000
3. LAS	1998	D	Stabilization Optics for Laser		40,000				40,000
3. LAS	2000	D	Test Rig for Laser Characterization		70,000				70,000
3. LAS	2001	D	Test Rig for Laser Characterization		70,000				70,000
3. LAS	Total								320,000

Task	FY_	Line	Description	FTEs Direct	Benefits	GRAs	Overhead	Total
4. OPT	1997	D	Laser, IR Modulators and Isolators, Optics	80,000				80,000
4. OPT	1997	D	Machining	10,000				10,000
4. OPT	1998	D	Bulk Absorption Metrology - Hardware	55,000				55,000
4. OPT	1998	D	Damage Test Setup	40,000				40,000
4. OPT	1999	D	Bulk Absorption Metrology - Glass Developmer	nt 30,000				30,000
4. OPT	1999	D	Chemical Cleaning	4,000				4,000
4. OPT	1999	D	Coating Absorption Uniformity	20,000				20,000
4. OPT	1999	D	Coating Uniformity Metrology	10,000				10,000
4. OPT	1999	D	In Situ Cleaning	30,000				30,000
4. OPT	1999	D	Phase Shifting IFO Environmental Isolation	5,000				5,000
4. OPT	1999	D	Phase Shifting IFO Infrastructure Hardware	10,000			-	10,000
4. OPT	1999	D	Phase Shifting IFO Interferometer Hardware	30,000				30,000
4. OPT	1999	D	Lensing Compensation Material	20,000				20,000
4. OPT	2000	D	Lensing Compensation Test Setup Hardware	40,000				40,000
4. OPT	2000	D	Bulk Absorption Metrology - Glass Developmen	nt 45,000				45,000
4. OPT	2000	D	Chemical Cleaning	5,000				5,000
4. OPT	2000	D	Coating Absorption Uniformity	15,000				15,000
4. OPT	2000	D	Coating Uniformity Metrology	15,000				15,000
4. OPT	2000	D	In Situ Cleaning	30,000				30,000
4. OPT	2000	D	Lensing Compensation Test Setup Hardware	30,000				30,000
4. OPT	2000	D	Phase Shifting IFO Environmental Isolation	10,000				10,000
4. OPT	2000	D	Phase Shifting IFO Infrastructure Hardware	15,000				15,000
4. OPT	2000	D	Phase Shifting IFO Interferometer Hardware	50,000				50,000
4. OPT	2001	D	Bulk Absorption Metrology - Glass Developmen	nt 60,000				60,000
4. OPT	2001	D	Chemical Cleaning	5,000				5,000
4. OPT	2001	D	Coating Absorption Uniformity	10,000				10,000
4. OPT	2001	D	Coating Uniformity Metrology	15,000				15,000
4. OPT	2001	D	In Situ Cleaning	30,000				30,000
4. OPT	2001	D	Lensing Compensation Test Setup Hardware	30,000				30,000
4. OPT	2001	D	Phase Shifting IFO Environmental Isolation	10,000				10,000
4. OPT	2001	D	Phase Shifting IFO Infrastructure Hardware	15,000				15,000
4. OPT	2001	D	Phase Shifting IFO Interferometer Hardware	55,000				55,000
4. OPT	Total							829,000

Task	FY	Line	Description	FTEs	Direct	Benefits	GRAs	Overhead	Total
5. SAP	1997	D	Crystal Systems Sapphire		28,000			-	28,000
5. SAP	1998	D	Half Size Sapphire Blanks		37,000			-	37,000
5. SAP	1998	D	Sapphire Test Samples		37,000			-	37,000
5. SAP	2000	D	Half Size Sapphire Blanks		12,000			-	12,000
5. SAP	2000	D	Sapphire Test Samples		12,000			-	12,000
5. SAP	2001	D	Half Size Sapphire Blanks		12,000			-	12,000
5. SAP	2001	D	Sapphire Test Samples		12,000			-	12,000
5. SAP	Total								150,000

-

Task	FY	Line	Description	FTEs	Direct	Benefits	GRAs	Overhead	Total
6. PDT	1998	D	Lightwave 126 Nd:YAG Laser		40,000			-	40,000
6. PDT	1998	D	Digitizer/Data Logger		5,500				5,400
6. PDT	1998	D	Miscellaneous Optics		3,000				3,000
6. PDT	1998	D	Photo Detector Samples and NRE		7,500				7,500
6. PDT	1998	D	Power Meter		1,800				1,800
6. PDT	1998	D	Pulsed Nd:YAG		15,000				15,000
6. PDT	1998	D	RF Preamplifier		800				800
6. PDT	1998	D	XY Scan Stage and Control		3,500				3,500
6. PDT	1998	D	Miscelaneous Optics		5,000				5,000
6. PDT	1998	D	Miscellaneous Electronics		5,000				5,000
6. PDT	1999	D	Pulsed Nd:YAG		50,000				50,000
6. PDT	1999	D	Photo Detector Samples and NRE		10,000				10,000
6. PDT	1999	D	Thermal Test Chamber		4,000				4,000
6. PDT	1999	D	Cabling and Terminations		5,000				5,000
6. PDT	2000	D	AO Modulator and Driver		6,000				6,000
6. PDT	2000	D	Engineering Prototype Head Electronics		10,000				10,000
6. PDT	2000	D	Engineering Prototype Head Optical/Mechanica	al	30,000				30,000
6. PDT	2000	D	EO Modulators		9,000				9,000
6. PDT	2000	D	RF Power Amps		3,000				3,000
6. PDT	2000	D	Thermal Test Chamber		4,000				4,000
6. PDT	2001	D	EO Protection Shutter and Control		5,500				5,500
6. PDT	2001	D	Miscellaneous Test Optics and Electronics		5,000				5,000
6. PDT	2001	D	Software Licensing		5,000				5,000
6. PDT	2001	D	VME Crate and Instrumentation		35,000				35,000
6. PDT	Total								268,500

Took	EV	Lino	Description	ETEs Direct	Ronofits	GRAs	Overhead	Total
Task		Line	Description	Direct	Denents	ONAS	Overneau	i Otar
7. Aop	1999	D	Actuator Drive Power Electronics	4,000				4,000
7. AOP	1999	D	Beam Imaging and Frame Grabber	15,000			-	15,000
7. AOP	1999	D	Low Power Probe Laser	5,000				5,000
7. AOP	1999	D	Miscellaneous Electronics Components	2,500				2,500
7. AOP	1999	D	Miscellaneous Optical Components	1,000				1,000
7. AOP	1999	D	Prototype Thermal Filiament Actuator	10,000				10,000
7. AOP	1999	D	Schack-Hartmann Sensor and Interface	6,000				6,000
7. AOP	1999	D	Test Optic	1,500				1,500
7. AOP	1999	D	Thermal Coupling Test Stand Mechanical Comp	onents 4,000				4,000
7. AOP	2000	D	IR Pumping Laser	25,000				25,000
7. AOP	2000	D	Radial WFS Prototype	15,000				15,000
7. AOP	2001	D	Acoustic/Thermal Isolation Housing	5,000				5,000
7. AOP	2001	D	Control Loop Electronics and Software	10,000				10,000
7. AOP	2001	D	Galvo Scanning System, Drivers, Controls	10,000				10,000
7. AOP	2001	D	Miscellaneous Electronics Components	2,500				2,500
7. AOP	2001	D	Miscellaneous Optical Components	10,000				10,000
7. AOP	2001	D	Test Optics	3,000				3,000
7. AOP	Total		·					129,500

Task	FY	Line	Description	FTEs	Direct	Benefits	GRAs	Overhead	Total
8. CTR	1999	D	40 meter SID Analog to Digital Converters		2,000				2,000
8. CTR	1999	D	40 meter SID CPU		3,500			-	3,500
8. CTR	1999	D	40 meter SID Digital Signal Processor		5,000				5,000
8. CTR	1999	D	40 meter SID Miscellaneous Hardware and Cab	les	5,000				5,000
8. CTR	1999	D	40 meter SID Netrwork Card		3,000				3,000
8. CTR	1999	D	40 meter SID Reflective Memory Boards		5,000				5,000
8. CTR	1999	D	40 meter SID Sensors		15,000				15,000
8. CTR	1999	D	Mounting Racks		2,000				2,000
8. CTR	2000	D	40 meter Prototype Analog to Digital Converters	;	16,000				16,000
8. CTR	2000	D	40 meter Prototype CPU		3,500				3,500
8. CTR	2000	D	40 meter Prototype Digital Signal Processor		5,000				5,000
8. CTR	2000	D	40 meter Prototype Reflective Memory Boards		5,000				5,000
8. CTR	Total								70,000

Advanced R&D Proposal Budgets Detail

		أترينهم							
Task	FY	Line	Description	FTEs Di	irect	Benefits	GRAs	Overhead	Total
9. RSE	1997	D	Computer	7	7,000			-	7,000
9. RSE	1997	D	Diagnostics and General Electronics	44	1,000			-	44,000
9. RSE	1997	D	Electronics	5	5,000			-	5,000
9. RSE	1997	D	Laser (Lightwave 126-1064-100)	21	,000			-	21,000
9. RSE	1997	D	Miscellaneous Tools, Fasteners, etc.	6	3,685			-	6,685
9. RSE	1997	D	Optical Electronics	16	3,000			-	16,000
9. RSE	1997	D	Optical Supplies (hardware)	13	3,000			-	13,000
9. RSE	1997	D	Optical Table	22	2,000			-	22,000
9. RSE	1997	D	Optics (Mirrors and Lenses)	30),000			-	30,000
9. RSE	1998	D	Control Electronics	10),000				10,000
9. RSE	1998	D	Electronic Intstrumentation	60),000				60,000
9. RSE	1998	D	Optical Device	5	5,000				5,000
9. RSE	1998	D	Optics (Mirrors and Lenses)	5	5,000				5,000
9. RSE	1999	D	Control Electronics	13	3,333				13,333
9. RSE	1999	D	Electronic Intstrumentation	13	3,333				13,333
9. RSE	1999	D	Optical Device	10	0,000				10,000
9. RSE	1999	D	Optics (Mirrors and Lenses)	33	3,333				33,333
9. RSE	2000	D	Control Electronics	13	3,333				13,333
9. RSE	2000	D	Electronic Intstrumentation	13	3,333				13,333
9. RSE	2000	D	Optical Device	10	0,000				10,000
9. RSE	2000	D	Optics (Mirrors and Lenses)	33	3,333				33,333
9. RSE	2001	D	Control Electronics	13	3,333				13,333
9. RSE	2001	D	Electronic Intstrumentation	13	3,333				13,333
9. RSE	2001	D	Optical Device	10	0,000				10,000
9. RSE	2001	D	Optics (Mirrors and Lenses)	33	3,333				33,333
9. RSE '	Total								454,685

Task	FY	Line	Description	FTEs	Direct	Benefits	GRAs	Overhead	Total
4. OPT	1998	G5	Mirror Blanks		120,000				120,000
4. OPT	1999	G5	Coating Process Loss		20,000				20,000
4. OPT	1999	G5	Coating Process Uniformity		20,000				20,000
4. OPT	2000	G5	Polishing Development		40,000				40,000
4. OPT	2000	G5	Coating Process Loss		15,000				15,000
4. OPT	2000	G5	Coating Process Uniformity		15,000				15,000
4. OPT	2000	G5	Lensing Compensation Material		25,000				25,000
4. OPT	2000	G5	Polishing Development		38,300				38,300
4. OPT	2001	G5	Coating Process Loss		15,000				15,000
4. OPT	2001	G5	Coating Process Uniformity		15,000				15,000
4. OPT	2001	G5	Lensing Compensation Material		25,000				25,000
4. OPT	2001	G5	Polishing Development		88,300				88,300
4. OPT	Total								436,600

Task	FY	Line	Description	FTEs Direct	Benefits GR	As Overhead	Total
5. SAP	1997	G5	Subcontract (SIOM)	50,000		14,363	64,363
5. SAP	1998	G5	Coating Evaluation Half Size Blanks	12,000		•	12,000
5. SAP	1998	G5	Coating Half Size Blanks	13,000		-	13,000
5. SAP	1998	G5	Polishing Evaluation	8,000		-	8,000
5. SAP	1998	G5	Polishing Half Size Blanks	16,000		-	16,000
5. SAP	1998	G5	Sample Composition Evaluation	16,000		9,192	25,192
5. SAP	1998	G5	Sample Optical evaluation	8,000		4,596	12,596
5. SAP	1999	G5	Coating Evaluation Half Size Blanks	6,000		-	6,000
5. SAP	1999	G5	Coating Half Size Blanks	8,000		-	8,000
5. SAP	1999	G5	Full Size Blank Acquisition	30,000			30,000
5. SAP	1999	G5	Polishing Half Size Blanks	30,000			30,000
5. SAP	1999	G5	Sample Composition Evaluation	7,000		4,022	11,022
5. SAP	1999	G5	Sample Optical evaluation	8,000		4,596	12,596
5. SAP	2000	G5	Coating Evaluation Half Size Blanks	6,000		-	6,000
5. SAP	2000	G5	Coating Half Size Blanks	8,000		-	8,000
5. SAP	2000	G5	Full Size Blank Acquisition	30,000			30,000
5. SAP	2000	G5	Full Size Blank Coating and Evaluation	14,000		-	14,000
5. SAP	2000	G5	Full Size Blank Evaluation	2,000		-	2,000
5. SAP	2000	G5	Full Size Blank Polishing	16,000		-	16,000
5. SAP	2000	G5	Polishing Evaluation	8,000		-	8,000
5. SAP	2000	G5	Polishing Half Size Blanks	30,000			30,000
5. SAP	2000	G5	Sample Composition Evaluation	7,000		4,022	11,022
5. SAP	2000	G5	Sample Optical evaluation	8,000		4,596	12,596
5. SAP	2001	G5	Coating Evaluation Half Size Blanks	5,000		-	5,000
5. SAP	2001	G5	Coating Half Size Blanks	8,000		-	8,000
5. SAP	2001	G5	Full Size Blank Acquisition	30,000			30,000
5. SAP	2001	G5	Full Size Blank Coating and Evaluation	7,000		-	7,000
5. SAP	2001	G5	Full Size Blank Evaluation	1,000		-	1,000
5. SAP	2001	G5	Full Size Blank Polishing	8,000		-	8,000
5. SAP	2001	G5	Polishing Evaluation	4,000		-	4,000
5. SAP	2001	G5	Polishing Half Size Blanks	30,000			30,000
5. SAP	2001	G5	Sample Composition Evaluation	7,000		4,022	11,022
5. SAP	2001	G5	Sample Optical evaluation	15,000			15,000
5. SAP	Total						505,407

. . .

.