University of Adelaide ACIGA	Mar Di Li (C. Li Li Li Li Li
	Max Planck (Garching) GEO
Australian National University ACIGA	Max Planck (Potsdam) GEO
Caltech LIGO	MIT LIGO
Caltech Experimental Gravitation CEGG	University of Michigan UM
Caltech Theory CART	Moscow State University MSU
University of Cardiff GEO	University of Oregon UO
University of Florida (Gainesville) UF	Pennsylvania State University Exp PSUE
Glasgow University GEO	Pennsylvania State University Theory PSUT
University of Hannover GEO	(Russian) Institute of Applied Physics IAP
Joint Institute of Laboratory Astrophysics JILA	Stanford University ST
LIGO Livingston Louisiana Site LIGOLA	Syracuse University SU
LIGO Hanford Washington Site LIGOWA.	University of Western Australia ACIGA
Louisiana State University LSU	University of Wisconsin (Milwaukee) UWM
Louisiana Tech University LTU	

Table 1: Current members of the LIGO Scientific Collaboration

140-G980143-00-M

1

University of Adelaide ACIGA	Max Planck (Garching) GEO
Australian National University ACIGA	Max Planck (Potsdam) GEO
Caltech LIGO	MIT LIGO
Caltech Experimental Gravitation CEGG	University of Michigan UM
Caltech Theory CART	Moscow State University MSU
University of Cardiff GEO	University of Oregon UO
University of Florida (Gainesville) UF	Pennsylvania State University Exp PSUE
Glasgow University GEO	Pennsylvania State University Theory PSUT
University of Hannover GEO	(Russian) Institute of Applied Physics IAP
Joint Institute of Laboratory Astrophysics JILA	Stanford University ST
LIGO Livingston Louisiana Site LIGOLA	Syracuse University SU
LIGO Hanford Washington Site LIGOWA	University of Western Australia ACIGA
Louisiana State University LSU	University of Wisconsin (Milwaukee) UWM
Louisiana Tech University LTU	

Table 1: Current members of the LIGO Scientific Collaboration

• •

.

-

LIGO SCIENTIFIC COLLABORATION

- Research and Development Groups
 - >> Stochastic Forces Isolation systems and suspensions
 - David Shoemaker
 - >> Sensing Noise lasers and optics
 - Eric Gustafson
 - >> Interferometer Configurations
 - Ken Strain
 - Data Analysis Groups
 - >>Astrophysical Source Identification and Signatures
 - Bruce Allen/Tom Prince
 - >>Detector Characterization
 - William Hamilton/Daniel Sigg
 - >> Detection Confidence and Statistical Analysis
 - Sam Finn/Albert Lazzarini

Data Analysis Groups

Astrophysical source identification and signatures

techniques to search for posited sources - templates, filter and algorithm for: compact binary inspiral

impulsive sources

 black hole formation periodic sources stochastic background search for unknown sources source statistics - logs/logN estimation on-line and off-line functions

B. Allen, T Prince

Detector Characterization

development of statistical descriptions in time and frequency domains design of event catalogs correlation with environmental measurements correlation with internal detector parameters variance and covariance analysis correlation of noise between interferometers correlation of noise between sites on-line and off-line functions end to end models of the detector

W. Hamilton, D. Sigg

Detection Confidence and Statistical Analysis

assess detection confidence and uncertainties in astrophysical parameters Monte- Carlo models, Bayesian analysis multi-interferometer analysis correlation with other gravitational wave and particle detectors development of overall analysis system tests simulated time series software tests determination of on-line and off-line functions

S. Finn, A.Lazzarini

•

LSC Whitepaper on Research and Development

ىڭ زار مەردارىدىماتىيا دۆرىيىتى ئوسۇنىتى ئوشۇم بىرىماتىغا بولمىيەتلەمكرىكە تۇرىراتىرى بەزە 1.

Recommended Program

- >> A baseline plan for the first LIGO upgrades
 - Near term LIGO II --- small extrapolation from current practice
 - Medium term LIGO II --- significant extrapolation
- >> A research plan for the advanced detectors LIGO III
 - Basic research program
 - Approach facility and fundamental limits to the sensitivity

Next steps

- >> Report on progress yearly to LIGO PAC
- >> Iteration of program as guided by research results

Schedule and costs for baseline developed by LIGO laboratory in coordination with LSC

Gravitational wave strain, 1//Hz Gravitational wave strain, 1//Hz 01 52- 01 53- 53- 53- 53- 53- 53- 53- 53- 53- 53-	Initia 11 kg fused silica hire		2	
10^{-24}	k	10 ² Frequency, Hz	kkk	3 10
Parameter	Curve 1	Curve 2	Curve 3, 4	Curve 5, 6, 7
Parameter	Initial LIGO I value	Double suspension, 100 W laser, thermal de-lensing	, Signal tuned Alternative configuration test mass mate	
		и 62w 140w		1 1
Input power to recycling mirror	бw	62w	14	40w
Input power to recycling mirror Mirror loss (transmission+scatter)	бw 50 ррт	62w	14 20 ppm	40w
Input power to recycling mirror Mirror loss (transmission+scatter) Effective power recycli	6w 50 ppm 1g 30	62w	14 20 ppm 93	40w
Input power to recycling mirror Mirror loss (transmission+scatter) Effective power recycli Substrate absorption	6w 50 ppm 1g 30 5ppm/cm	62w 0.4 ppn	14 20 ppm 93 n/cm	40w 17 ppm/ cm
Input power to recycling mirror Mirror loss (transmission+scatter) Effective power recycli Substrate absorption Thermal lensing correc	6w 50 ppm 1g 30 5ppm/cm ion (none)	62w 0.4 ppn	14 20 ppm 93 n/cm factor 10	40w 17 ppm/ cm
Input power to recycling mirror Mirror loss (transmission+scatter) Effective power recycli Substrate absorption Thermal lensing correc Suspension fiber	$6w$ 50 ppm 30 $5ppm/cm$ ion (none) $steel \text{ wire,}$ $Q = 1.6 \times 10^{5}$	62w 0.4 ppn	14 20 ppm 93 n/cm factor 10 fused silica $Q = 3 \times 10^7$	40w 17 ppm/ cm
Input power to recycling mirror Mirror loss (transmission+scatter) Effective power recycli Substrate absorption Thermal lensing correc Suspension fiber Test mass	$6w$ 50 ppm 30 $5ppm/cm$ ion (none) $Q = 1.6 \times 10^{5}$ fused silica, $10.8 \text{ kg}, Q = 1 \times 10^{6}$	62w 0.4 ppn fused si 10.8 kg, Q	14 20 ppm 93 n/cm factor 10 fused silica $Q = 3 \times 10^{7}$ ilica, $= 3 \times 10^{7}$	40w 17 ppm/ cm sapphire, 30 kg, Q = 2×10 ⁸
Input power to recycling mirror Mirror loss (transmission+scatter) Effective power recycli Substrate absorption Thermal lensing correc Suspension fiber Test mass Signal recycling mirror transmission	$6w$ 50 ppm $1g 30$ $5ppm/cm$ ion (none) $Q = 1.6 \times 10^{5}$ fused silica, $10.8 \text{ kg}, Q = 1 \times 10^{6}$ (not	62w 0.4 ppn fused si 10.8 kg, Q one)	14 20 ppm 93 n/cm factor 10 fused silica $Q = 3 \times 10^{7}$ ilica, $= 3 \times 10^{7}$ T=0.6 (curve 3) T=0.15 (curve 4)	40w 17 ppm/ cm 17 ppm/ cm 30 kg, $Q = 2 \times 10^8$ Curve 5: none T=0.3 (curve 6) T=0.09 (curve 7)

.

4

.

Figure and Table 1 : Performance and parameters of interferometers described in program.

	Top-level Goal	Key technologies
LIGO-II near-term research results -	 factor 6 increase in distance of detect- able NS binaries SQL 11 kg test mass 	 100 W laser source to reduce shot noise and ancillary optics correction of thermal lensing to permit higher powers use of low-absorption optical substrates and coatings to permit higher powers Double pendulum test mass suspension with silica substrate and lower loss pendulum fiber to reduce thermal noise elimination of all actuation on the test mass to reduce thermal and excess noise Active low-frequency isolator to reduce RMS motion
LIGO-II medium- term research results	 additional 3x increase in NS binary seeing SQL 30 kg test mass 	 incremental increases in laser power signal-tuned interferometer configuration to reshape the shot-noise limited sensitivity lowered coating absorption larger test mass (~30 kg) to reduce radiation pressure noise; alternative crystalline test mass material such as sapphire to lower thermal noise improved seismic isolation via active and/or passive systems to realize benefit of lower thermal noise
LIGO-III research targets	 further 5x increase in NS binary seeing Performance lim- ited by facilities down to 15 Hz SQL 300 kg test mass Performance exceeding naive facility and quantum limits 	 megawatts of circulating power to reduce shot noise alternative test mass materials for optical, thermal, and mechanical properties Cryogenic test mass and suspension and/or sensing/ feedback to significantly reduce thermal noise larger test mass to reduce radiation pressure noise additional active or passive lower-frequency isolation, probably requiring additional auxiliary sensor/ actuator layers to realize benefit of lower thermal noise extra low-frequency isolation for detection down to gravity gradient noise, perhaps below. alternative optical configurations QND readout scheme with low circulating power

ļ

v

.

¥

Table 2: Research and Development Program for LIGO-II and LIGO-III systems

Limits due to facilities

4

·	Double pendulum suspension	100 W Laser and ancillary optics	Signal-tuned Configuration	
Top-level Requirements review	4th qtr '98	lst qtr '99	2nd qtr *99	
Conceptual design; Design summit	lst qtr '99	3rd qtr '99	lst qtr '00	
Internal requirements, component research, configuration trades; Preliminary Design Review	2nd qtr '99	ist qtr '00	3rd qtr '00	
Component Prototypes; Test Review	3rd qtr '00	lst qtr 'Ol	4th qtr '02	
Fabrication of Engineering Prototypes	lst qtr '01	lst qtr '02	4th qtr '04	
System tests; Final Design Review	3rd qtr '02	lst qtr '03	lst qtr '05	
Fabrication complete	4th qtr '03	4th qtr *03	3rd qtr '05	
Installation complete	2rd qtr '04	2nd qtr '04	lst qtr '06	
Shakedown; Commissioning	4th qtr •04	4th qtr '04	3rd qtr *06	
			······································	

Table 3: Schedule for LIGO II improvements (end dates)

Interferometer Configurations

.

Selection/Optimization (Fritschel)	LIGO/MIT, LIGO/Caltech, UF, GEO
Dual Recycling/Resonant Sideband Extraction (Strain)	ACIGA/ANU, GEO, LIGO/Caltech, UF
Sagnac Interferometers (Fejer)	Stanford
Squeezing (McClelland)	ACIGA/ANU
QND (Braginsky)	MSU, CaRT

Table 1: Tasks, Coordinators, Active Groups

Stochastic Forces - Isolation and suspensions

Tal	ble	2:	Tasks,	Coordinators	, Active	Groups
-----	-----	----	--------	--------------	----------	--------

Internal Requirements (Gonzalez)	PSU, LIGO/MIT, Stanford
Configuration (Hough)	Joint activity, Design Summit
Controls (How)	Stanford, GEO, LIGO/MIT, PSU, JILA, CEGG
Passive Isolation (Giaime)	LIGO/Caltech, LIGO/MIT, PSU, JILA, GEO
Thermal/Excess Noise (Saulson)	Syracuse, LIGO/Caltech, Stanford, MSU, GEO, CEGG
Systems (Shoemaker)	LIGO/Caltech, LIGO/MIT, Stanford, PSU, LTU

Sensing Noise - Lasers and Optics.

Table 3: Tasks, Active Groups

Core Optics (Whitcomb)	LIGO/Caltech, Stanford, Syracuse, GEO, IAP
Contamination (Camp)	LIGO/Caltech, Stanford, IAP
Active compensation (Zucker)	LIGO/MIT, Stanford
Diffractive Optics (Munch)	CEGG, Stanford, ACIGA/Adelaide
Ancillary Optics (Reitze)	UFlorida, Stanford, LIGO/MIT, IAP
100 W Laser (Byer)	Stanford, LIGO/Caltech, ACIGA/Adelaide, GEO