High-Resolution Laser Spectroscopy and Laser Frequency Standards

Institute of Laser Physics, Siberian Branch of Russian Academy of

Sciences, Novosibirsk, Russia.

Maxim Okhapkin

High-Resolution Spectroscopy of Methane

Fig.1. Experimental setup.

-46 -44 -42 -40 -38 -36 -34 -32 Frequency Detuning from 7-6 Transition, kHz.

Fig.3. Record of the nonlinear resonances at $\mathbf{D}F = -1$ transitions and crossings on the $F_2^{(2)}$ methane line. Tab.1. Relative frequency positions and intensities of three mane resonances of the $F_2^{(2)}$ line.

Transitions	Frequency detuning from $7\rightarrow 6$ transition, (kHz).					
$(\mathbf{n}_3=0,J=7,F_1) \rightarrow (\mathbf{n}_3=1,J=6,F_2)$	[2]		[3]	Our results		
8→7	11.4±0.3		11.34±0.05	11.336±0.018		
7→6	0		0	0		
6→5	-10.8±0.3		-11.06±0.05	-11.081±0.022		
Transitions	Relative intensity					
$(\mathbf{n}_3=0,J=7,F_1) \rightarrow (\mathbf{n}_3=1,J=6,F_2)$	Theory		[2]	Our results		
8→7	1.168		1.20±0.10	1.18±0.02		
7→6	1		1	1		
6→5	0.874		0.90±0.05	0.86±0.02		
Tab.2. Relative positions of crossings	of the $F_2^{(2)}$ me	ethane line.				
Crossings between the $DF=DJ=-1$ and $DF=0$ transitions.		$F=0$ Frequency detuning from $7\rightarrow 6$ transition, (kHz).				
		[3]		Our results		
7→6,6→6		-35.3±0.5		-35.18±0.05		
6→5,6→6		-38.7±0.5		-38.52±0.07		
8→7,7→7		-39.7±0.5		-39.59±0.07		
7→6,7→7		-43.2±0.5		-43.00±0.08		
Tab.3. Hyperfine frequency intervals	of the $F_2^{(2)}$ me	thane line.				
$E(\mathbf{n}_3, J, F) - E'(\mathbf{n}_3, J, F')$	Hyperfine splitting of levels, (kHz).					
	Theory [6,7]		[3]	Our results		

	Theory [6,7]	[3]	Our results
<i>E</i> (1,6,5)- <i>E</i> (1,6,6)	53.3±0.8	57.32±1.00	57.12±0.16
<i>E</i> (1,6,6)- <i>E</i> (1,6,7)	84.3±0.9	88.56±1.00	88.26±0.20
<i>E</i> (0,7,6)- <i>E</i> (0,7,7)	68.36±0.74	68.44±1.00	68.16±0.17
<i>E</i> (0,7,7)- <i>E</i> (0,7,8)	99.71±0.83	99.88±1.00	99.50±0.27

The hyperfine energies of rotational levels in the ground vibrational state of ${}^{12}CH_4$ can be written in the following form:

$$E = h_0 D_t + \left[-c_a + h_1 c_d \right] \left(\frac{1}{2} C \right) + h_2 d \left[\frac{3}{4} C(C+1) - I(I+1)J(J+1) \right] / J(J+1),$$

Yi, Ozier and Ramsey: (in kHz) $c_a = +(10.4\pm0.1), c_d = +(18.5\pm0.5), d = +(20.9\pm0.3),$

Our value for the scalar spin-rotation coupling constant is

 $c_a = 10.38 \pm 0.04$ kHz.

Shifts of the Recoil Doublet due to the Magnetic Field.

Fig.6. Shifts of the recoil components in magnetic fields (1 is the high-frequency and 2 is low-frequency component).

Fig.7. Frequency shifts of the recoil doublet components under deviation change. Fig.8. Frequency shifts of the recoil doublet components under methane pressure change.

High-Resolution Spectroscopy of Iodine

Spectroscopy of Rare - Earth elements

Page 1

Note 1, Linda Turner, 12/08/98 02:23:39 PM LIGO-G980146-00-R