Lock Acquisition

• What is it? What is it required to do?

Control the random motion of the six test masses, bringing the relative displacements of the test masses into integer multiples of the source frequency, within a short time, and within the limits of the actuators and sensors available, without exciting long time-scale degrees of freedom ,and then hold these lengths stably against noise until the detection mode controls can be switched in.

• How does one go about this?

Lock acquisition is primarily concerned with longitudinal degrees of freedom; alignment degrees primarily only affect the overall gain of the plant (power lost into higher modes doesn't change the transfer function of the TEM00 plant, except for overall gain).

As a modification of the steady-state detection mode plant and controller, one can study the behavior of the plant in the acquisition states and design controllers accordingly.

- How does one study the plant and transitions?
 - >> SMAC
 - Transfer functions (of the plant only!)
 - Time evolution
- One True Path to Lock Acquisition

Design Considerations/ Constraints

- Acquisition time
- Plant changes with state transitions
- Stability
- Ground motion
- Sensor/actuator limits
- Internal TM resonances
- Similarity to detection mode controls

Acquisition Time

- L- threshold velocity of 10 lambda/s achieved
- I- threshold velocity of 0.5 lambda/s achieved
- MTTL of seconds implied and simulated

SMAC Model

SMAC Interferometer Model

SMAC Configuration

Lengths

Figure 1: Definition of servo lengths in the system.

$$\frac{E_{\text{refl}}}{E_{\text{inc}}} = r_i + \frac{t_i^2 r_e e^{-i\phi}}{1 + r_i r_e e^{-i\phi}} \equiv r_c(\phi)$$

State Equations (cont)

$$r_T(\Phi,\phi) \equiv \frac{1}{2} \left[r_c(\Phi_1) \ e^{-i\phi_1} + r_c(\Phi_2) \ e^{-i\phi_2} \right]$$
$$r_T \Big|_4 = \frac{1}{2} (r_c^\pi + r_c^\pi) = -0.98984$$
$$r_T \Big|_2 = \frac{1}{2} (r_c(0) + r_c(0)) = 0.99996$$
$$r_T \Big|_3 = (r_c^0 + r_c^\pi)/2 = 5.06 \times 10^{-3} \simeq 1/198$$

$$g_{cr} = \frac{t_r}{1 + r_r r_T} \qquad g_{sb} = \frac{t_r}{1 - r_r r_m} \qquad \text{root of recycling gain}$$
$$r_{cr} = \frac{r_r + r_T}{1 + r_r r_T} \qquad r_{sb} = \frac{r_r - r_m}{1 - r_r r_m} \qquad \text{amplitude of reflected fields}$$
$$t_{cr} = 0 \qquad t_{sb} = \frac{t_r \sqrt{1 - r_m^2}}{1 - r_r r_m} \qquad \text{amplitude of fields transmitted to asymmetric port}$$

$$s_{c} = \frac{i\omega_{a}}{\omega_{c}} \qquad \omega_{c} = \frac{c}{2L} \left(\frac{1 - r_{i}r_{e}}{\sqrt{r_{i}r_{e}}} \right) \qquad f_{c} = 91 \text{ Hz} \quad \text{cavity pole, all states}$$

$$s_{cc} = \frac{i\omega_{a}}{\omega_{cc}} \qquad \omega_{cc} = \left(\frac{1 + r_{r}r_{T}}{1 + r_{r}} \right) \omega_{c} \qquad f_{cc} = 91, 46, 1.16 \text{ Hz} \quad \text{double cavity pole}$$

$$s_{r} = \frac{i\omega_{a}}{\omega_{r}} \qquad \omega_{r} = \left(1 + \frac{g_{cr}^{2}r_{sb}r_{T}}{g_{sb}^{2}r_{cr}r_{m}} \right) \omega_{cc} \qquad f_{r} = 91, 46, 6.0 \text{ Hz} \quad \text{reflection zero}$$

$$s_{p} = \frac{i\omega_{a}}{\omega_{p}} \qquad \omega_{p} = \left(1 - \frac{g_{cr}}{g_{sb}} \right) \omega_{cc} \qquad f_{p} = 91, 46, -0.74 \text{ Hz} \quad \text{negative recycling cavity zero}$$

State Equations

$$\begin{split} S_A &= 4Sk \ g_{cr} t_{sb} \frac{1}{1+s_c} \left[r_c \ \delta l_- - r'_c \ \delta \mathbb{L}_- \right] \sin \omega_m t \\ S_R &= -4Sk \ g_{sb} t_{sb} r_{cr} \left[r'_m \ \delta \mathbb{L}_- + \delta l_- \right] \sin \omega_m t \\ &+ 4Sk \ \frac{1}{1+s_{cc}} \left[g_{cr}^2 r_{sb} r'_c \ \delta \mathbb{L}_+ - (g_{cr}^2 r_{sb} r_c + g_{sb}^2 r_{cr} r_m)(1+s_r) \ \delta l_+ \right] \cos \omega_m t \\ S_P &= 4Sk \ \frac{g_{cr} g_{sb} t_{sb}}{t_r} \left[r'_m \ \delta \mathbb{L}_- - \delta l_- \right] \sin \omega_m t \\ &+ 4Sk \ \frac{g_{cr} g_{sb} r_m}{t_r} \frac{1}{1+s_{cc}} \left[r_c (g_{cr} - g_{sb})(1+s_p) \ \delta l_+ - g_{cr} r'_c \ \delta \mathbb{L}_+ \right] \cos \omega_m t \\ S_P' &= Sg_{cr} g_{sb} r_m \ \frac{1-r_c}{1+r_r} \ \frac{is_{cc}}{1+s_{cc}} \nu \ \cos \omega_m t \\ S_R'' &= -Sr_{sb} \ (1-r_{cr}) \ \frac{is_{cc}}{1+s_{cc}} \nu \ \cos \omega_m t \end{split}$$

State Transitions

State Transitions

quantity			State		Description								
					Recycling Mirror								
r_r			0.97 = 0.98	15	reflectivity								
l_r			$/30 \times 10^{-6}$	5	absorption loss								
t_r		$\sqrt{1-r^2-l^2}$	$\sqrt{2} = \sqrt{0.029}$	97 = 0.173	transmission								
					Input Test Mass								
l_i		$\sqrt{75 \times 10^{-10}}$	$10^{-6} = 0.0$	08660	absorption loss								
r_{AR}		\checkmark	300×10^{-6}	6	AR loss								
t_i			0.03 = 0.17	3	transmission								
r_i	Τ	$\sqrt{1-t^2}$ –	$l^2 = 0.970$	= 0.985 ·	reflectivity								
	End Test Mas												
t_e		$\sqrt{10 \times 10}$	$10^{-6} = 0.0$	03162	transmission								
l_e		$\sqrt{70 \times}$	$10^{-6} = 0.0$	08367	loss								
r_e		···	0.99996		reflectivity								
L	- I				Beam Snlitter								
l_{hs}	Τ	v	730×10^{-6}		absorption loss								
TAR		, /	300×10^{-6}	3									
The	1	V	$\frac{1}{\sqrt{1/2}}$		rofloctivity								
the		$\sqrt{1-r^2}$ –	$\frac{v^{-1}}{l^2 = 0.4997}$	7 = 0.707	trongmission								
-03	L	V - 1	0.1001	- 0.101	, transmission Mine								
lasum			0.23 m		Schnupp asymmetry								
l_{\pm}			9.38 m		recycling cavity average length								
ω_m		2π (23.97) MH	[z	modulation frequency								
λ			$1.064 \ \mu \mathrm{m}$		laser wavelength								
	J		······································		Fabry-Perot derived quantities								
	ar	tiresonant	res	sonant									
r_c		0.99996	-0	0.98984	carrier reflectivity of FP cavity (r_c^0, r_c^{π})								
r_m			0.	97342	sideband reflectivity of FP cavity								
r_c'			1	30.31	dr_c/dL (resonant)								
r'_m			0.0	007634	dr_m/dL								
f_c			91 Hz		Fabry-Perot cavity pole								
					IFO derived quantities								
	1	2	3	4									
g_{cr}		0.0872	0.173	$\sqrt{46} = 6.74$	recycling carrier gain								
g_{sb}		0.00000	$\sqrt{17} = 4.13$	5	recycling sideband gain								
r_T		0.99996	0.005	-0.98984	reflected Thevenin equivalent								
<u> </u>		0.002	-0.0017	-0.74	carrier field at PO2								
73 rp		0.001	-0.001	-4.11	carrier field at PO3								
<u>r</u> .		1 000	0.122	4.70	carrier neid reflected from I'I'M								
r cr	<u> </u>			-0.19/1	reflected carrier field								
ton			0.00140	0	fields transmitted to asymmetric next								
tsh			0.94452	V	fields transmitted to asymmetric port								
fcc		f_c	$f_c/2$	1.16 Hz	double cavity pole (recycing \perp FP)								
$\frac{f_r}{f_r}$		$\frac{f_c}{f_c}$	$\frac{f_c/2}{f_c/2}$	6.0 Hz	reflection zero								
$f_{\mathcal{D}}$		$\frac{f_c}{f_c}$	$\frac{f_c/2}{f_c/2}$	-0.74 Hz	recycling cavity zero								
<u> </u>				1	outroy Bolo								

•

Table 1: Interferometer parameters.

Figure 5: Derived common mode transfer function (L_+) , all states.

Figure 6: Common mode transfer function (L_+) at D7, SMAC and Twiddle, all states.

Figure 7: Derived differential mode transfer function (L_{-}) , all states.

Figure 8: Michelson differential mode transfer function (L_{-}) , SMAC and Twiddle, all states.

Figure 9: Derived source transfer functión (ν), all states.

Figure 10: Source transfer function (ν) at D7, SMAC and Twiddle, all states.

Figure 3: Derived Michelson common mode transfer function (l_+) , all states.

Figure 4: Michelson common mode transfer function (recycling mirror-driven l_+), SMAC and Twiddle (+120 dB), all states.

Figure 1: Derived Michelson differential mode transfer function (l_{-}) , all states.

Figure 2: Michelson differential mode transfer function $(-(M_1 + M_2) + (M_3 + M_4))$ at D7, SMAC and Twiddle, all states.

I- Open Loop Gain

A.C.

X.C

an an

L+ Open Loop Gain

I+ Open Loop Gain

4.85 ×

the second se

Laser Frequency Open Loop Gain

L-Open Loop Gain

Interferometer States

Triggers and controller switching

State Transition	Loop	Trigger	Effect
$1 \rightarrow 2$	l_{\pm}	$P_R^{sb} < 0.04 \ \mathrm{W}$	State 2 acquired, enable L_+
2 ightarrow 3	ϕ, L_+	$P_A^c > 0.15 \ \mathrm{W}$	State 3 acquired, $-30 \text{ dB } l_{-} \pm l_{-}$ actuator sign
	L_{-}		enable L_{-} loop
$3 \rightarrow 4 (acq)$	all	$P_R^c < 5.25 \ \& \ P_A^c < 0.15 \ { m W}$	
$4 (acq) \rightarrow 4 (det)$	all	$ P_{tr }^{c} \ \& \ P_{tr\perp}^{c} > 0.305 \ { m W}$	switch to detection mode

1

Table 1: Transition through the acquisition states, showing triggers and controller enabling. c carrier, sb – sideband, tr – transmitted, a – asymmetric port, r – reflected port.

CONTROLLER	STATE 2						STATE 3						STATE 4					
	Gain (dB)		Phase (deg.)		Gain (dB)		Phase (deg.)			Gain (dB)			Phase (deg.)					
$S_{PQ} \rightarrow l_{-}$	40	0	380 Hz	55	0	$12 \mathrm{~Hz}$	30	0	380 Hz	80	0	135 Hz	26	0	380 Hz	55	0	39 Hz
$S_{RI} \rightarrow l_+$	28	0	1.12 kHz	80	0	135 Hz	16	0	1.12 kHz	64	0	210 Hz	29	0	1.17 kHz	83	0	121 Hz
$S_{PI} \rightarrow L_+$							81	0	14 kHz	116	0	1 Hz	53	0	14 kHz	42	0	43 Hz
$S_{AQ} \rightarrow L_{-}$								0			0		24	0	2.67 kHz	46	0	234 Hz
$S_{PI} \rightarrow \nu$							∞	0	_	40	0	300 Hz	∞	0	_	45	0	2 kHz

.

.

Table 1: Gain and phase margins of controllers

Controllers

$$\begin{split} \beta_{PQ} \to l_{-} &= -21.6 \frac{(s+2\pi/2)(s+2\pi/30)}{(s+2\pi/300)} \\ &< (2 \text{ kHz 5 pole Butterworth}) \\ S_{RI} \to l_{+} &= -1080 \frac{(s+2\pi/1)(s+2\pi/50)}{(s+2\pi/100)(s+2\pi/300)(s+2\pi/3.5 \text{ kHz})} \\ \delta \omega_{I} \to L_{+} &= (s+2\pi/1)(s+2\pi/50) \\ &< (6 \text{ pole, } 0.1\% \text{ ripple, } 60 \text{ dB stopband, } 7.5 \text{ kHz elliptic}) \\ &< (8 \text{ pole } 80 \text{ dB elliptic notch } 9.1 \text{ kHz} + (0.1 \text{ kHz}) \\ S_{IQ} \to L &= -\frac{1}{10} \frac{(s+2\pi/500)(s+2\pi/50) \text{ kHz}}{(s(s+2\pi/1)(s+2\pi/10) \text{ kHz})} \\ \leq (6 \text{ pole, } 0.1\% \text{ ripple, } 60 \text{ dB stopband, } 7.5 \text{ kHz elliptic}) \\ &< (8 \text{ pole } 80 \text{ dB elliptic notch } 9.1 \text{ kHz} + (0.1 \text{ kHz}) \\ \leq (6 \text{ pole, } 0.1\% \text{ ripple, } 60 \text{ dB stopband, } 7.5 \text{ kHz elliptic}) \\ &< (8 \text{ pole } 80 \text{ dB elliptic notch } 9.1 \text{ kHz} + (0.1 \text{ kHz}) \\ \leq (6 \text{ pole, } 0.1\% \text{ ripple, } 60 \text{ dB stopband, } 7.5 \text{ kHz elliptic}) \\ &< (8 \text{ pole } 80 \text{ dB}) (s+2\pi/50)(s+2\pi/250) \\ &< (6 \text{ pole, } 0.1\% \text{ ripple, } 60 \text{ dB stopband, } 7.5 \text{ kHz elliptic}) \\ &< (8 \text{ pole } 80 \text{ dB elliptic notch } 9.1 \text{ kHz} + (0.1 \text{ kHz}) \\ \end{cases}$$

.

Results and Refinements

- Designed a stable, robust lock acquisition system requiring minimal switching, with predicted short MTTL.
- Better understanding of plant in divers states.
- Frequency crossovers in L+, frequency loops to MC, PSL, IFO
- Simplify controllers further to minimize switching between acquisition and detection modes
- Evolve SMAC as diagnostic tool for LIGO turnon
- Use STM code to further study alignment effects
- Study transitions between states (short time scale effects), improve triggering
- Implement LA in digital/analog control system

Fringe

Ground Motion

6

0.0