INTERFEROMETRIC SENSING AND CONTROL IN LIGO

Nergis Mavalvala October 1998

Introduction to control systems
Length and alignment sensing
Noise Sensitivity
Length control system
Noise suppression
More tricks? Data?

□ Lock Acquisition (Brent Ware)...

ELEMENTS OF A CONTROL SYSTEM

- Plant: system to be controlled, e.g. cavity length
- Sensor: "sees" cavity length change, e.g. photodetection/demodulation
- Filter: designed to suppress noise as needed
- Actuator: "moves" cavity length, e.g. suspension
- Upshot: when G(f) >> 1 then $x_i << x_d \Rightarrow$ plant input is much smaller than the original disturbance

INTERFEROMETER OPTICAL CONFIGURATION

Fabry-Perot arm cavities
 Dark fringe at antisymmetric port
 Power Recycling (G_{rec} ~ 50)
 4 longitudinal degrees of freedom
 12 angular degrees of freedom

IFO LENGTHS: WHY CONTROL THEM?

 \Box Cavity resonant linewidth: $\delta l \ll \frac{\lambda}{2E} \sim 10^{-8}$ m

- ❑ Deviation from perfect destructive interference ⇒ coupling of noise to GW signal
 - e.g. laser intensity noise

$$\frac{S(\delta P/P = 10^{-7})}{S(\delta L_D)} \le 0.1 \implies \delta L_D \le 10^{-13} \text{ m}$$

□ Deviation from perfect resonance \Rightarrow less power build-up in ifo \Rightarrow less GW signal

$$\bigcirc$$
 e.g. $\frac{P(\delta L_C)}{P_{max}} \bigg|_{arm} \ge 0.99 \Rightarrow \delta L_C \le 10^{-12} \text{ m}$

- Ground noise excitation ~ 10⁻⁵ m (typical μseismic motion of earth)
- □ Sooo, need to suppress length fluctuations due to ground noise by factor $\delta L_D / \delta L_{gnd} \sim 10^{-8}$

IFO ALIGNMENT: WHY CONTROL MIRROR ANGLES?

Degradation of GW sensitivity

 $\frac{(S/N)_{GW}(\delta\theta_i)}{(S/N)_{GW}(\delta\theta_i=0)} \le 0.995 \implies \delta\theta_i \le 10^{-8} \text{ rad}$

Misalignment – input beam jitter coupling

 $\delta \theta_{rms} \le 10^{-8} \text{ rad} \implies \alpha \sim 10^{-14} \text{ rad}/\sqrt{\text{Hz}}$ and

 $x \sim 10^{-9} \text{ m/}\sqrt{\text{Hz}}$

□ Mirrors drift with respect to the local frame $\Rightarrow \delta \theta_i \ge 10^{-7}$ rad

Some Control Systems Terminology

 Transfer function (frequency response): magnitude and phase of output when input is a sinusoid of unit mag. and frequency *f*.
 Bode diagram

MORE CONTROL SYSTEMS PHENOMENA

Stability: control action must correspond to error signal throughout the control band

$$x_i = \frac{x_d}{1 + G(f)}$$
 but $x_i \to \infty$ when $G(f) \to -1$

- Gain: gain must be high enough to adequately suppress noise input
- Bandwidth: frequency range over which control action is useful
 - limited by sensor noise, actuator response
- Dynamic range: maximum signal cf. noise of device
- □ Multiple actuators: "cross-overs"
 - use each actuator in frequency range where it is most effective BUT make sure it does not interfere with the other at frequencies where its control action is not good

A SIMPLE(ISH) EXAMPLE: THE PRE-STABILIZED LASER

Two frequency actuators: PZT and EOM

- actuator 1 (PZT): large dynamic range (~400 MHz) but small bandwidth (resonances above ~200 kHz)
- actuator 2 (EOM): small dynamic range (~200 kHz), no DC response, but works out to ~100 MHz

Design filters so that

- both actuation paths work together (no fighting)
- **O preserve dynamic range**
- high gain where needed
- O high bandwidth where needed
- stable!

OPEN LOOP GAINS FOR PSL FREQUENCY LOOPS

 $G_{tot} = G_{PZT} + G_{EOM}$

LENGTH SENSING ERROR SIGNALS

Heterodyne phase detection techniques

- \bigcirc Use phase modulated light at input (*f* ~ 10–50 MHz)
- Cavity lengths: Pound-Drever-Hall reflection locking (carrier that is resonant in cavity beats against rf
 - sidebands that are not)
- Antisymmetric port: Schnupp asymmetry / suppressed carrier scheme (dark port is not perfectly dark for rf sidebands)
- Signals proportional to various ifo lengths given by magnitude and phase of carrier and rf sidebands at each sensing port
 - O Antisymmetric or "dark" port (GW signal!)
 - Reflection port (coupling important, i.e. sensitive to ifo loss du jour)
 - Recycling cavity pick-off port ("picked off" light is loss in rec. cav., i.e. small signal levels)

SIGNAL EXTRACTION

OPTICAL PLANT

Antisymmetric port

$$S_{anti} \propto -g_{cr}t_{sb}r_{c}'k\Delta L_{D}\frac{1}{1+s_{c}}\sin\omega_{m}t + g_{cr}t_{sb}r_{c}k\Delta l_{D}\frac{1}{1+s_{c}}\sin\omega_{m}t$$

Reflection port

$$S_{refl} \approx -g_{sb}t_{sb}r_{cr}\hat{r}_{c}k\Delta L_{D}\sin\omega_{m}t - g_{sb}t_{sb}r_{cr}k\Delta l_{D}\sin\omega_{m}t + g_{cr}^{2}r_{sb}r_{c}'k\Delta L_{C}\frac{1}{1+s_{cc}}\cos\omega_{m}t - \left[g_{cr}^{2}r_{sb}r_{c} + g_{sb}^{2}r_{cr}r_{M}\right]k\Delta l_{C}\frac{1+s_{r}}{1+s_{cc}}\cos\omega_{m}t$$

Recycling cavity pick-off port

$$S_{pick-off} = \frac{g_{cr}g_{sb}}{t_5} t_{sb}\hat{r}_c k\Delta L_D \sin\omega_m t + \frac{g_{cr}g_{sb}}{t_5} t_{sb} k\Delta l_D \sin\omega_m t$$
$$-\frac{g_{cr}g_{sb}}{t_5} r_M r_c' k\Delta L_C \frac{1}{1+s_{cc}} \cos\omega_m t$$
$$+\frac{g_{cr}g_{sb}}{t_5} r_M r_c [g_{cr} - g_{sb}] k\Delta l_C \frac{1+s_p}{1+s_{cc}} \cos\omega_m t$$

FREQUENCY DEPENDENCE

LIGO

ALIGNMENT SENSING

Angular misalignments excite higher-order transverse modes

$\Box TEM_{10} \text{ amplitude} \propto misalignment angle}$

□ Wavefront sensor measures TEM₁₀ ampl.

- Length sensor signal: beating of carrier TEM₀₀ field against sideband TEM₀₀ field
- Wavefront sensor signal: Beating of carrier TEM₀₀ field against sideband TEM₁₀ field

Spatial map of this TEM₁₀ mode at modulation frequency

Segmented photodetector

 Distinguish mirrors of the interferometer by Guoy phase shift

ALIGNMENT OF LIGO INTERFEROMETERS

ALIGNMENT SENSING MATRIX

□ Signal at each sensor in Watts per normalized angle ($\theta_D \sim 10^{-5}$ rad)

Wavefront Sensor			Angular degree of freedom					
# (port)	f _{mod}	Φ_{RF}	Φ Guoy	∆ ETM	∆ <i>ITM</i>	ETM	ĪTM	RM
WFS 1 (dark)	f _{res}	Q	90°	-0.044	-0.02	0	0	0
WFS 2 (refl)	f _{res}	I	145°	0	0	-2.0 × 10 ⁻³	0.026	-0.041
WFS 2b (refl)	f _{res}	Q	145°	9.6 × 10 ⁻⁵	-5.8 × 10 ⁻³	0	4.6 × 10 ⁻⁴	-7.0 × 10 ⁻⁴
WFS 3 (refl)	f _{NR}	I	0 °	0	0	-7.0 × 10 ⁻⁴	-3.2 × 10 ⁻⁴	7.3 × 10 ⁻³
WFS 4 (refl	f _{NR}	I	90°	0	0	-8.0 × 10 ⁻³	-3.7 × 10 ⁻³	6.4 × 10 ⁻⁴
WFS 5 (pick-off)	f _{res}	Q	145°	6.5 × 10 ⁻⁴	-0.039	0	3.2 × 10 ⁻³	-4.4 × 10 ⁻³

Frequency dependence given by transverse mode spacing rather than cavity storage time, i.e. flat response out to ~10 kHz

... LAST WEEK THIS WEEK...

○ Closed loop control system (SISO)

 Plant is disturbed ⇒ Sensor detects disturbance ⇒ Controller converts into control action ⇒ actuator fights disturbance

○ Multiple actuation paths (SIMO): PSL

Control action must be coordinated

○ LIGO interferometer (MIMO)

 Optical plant ⇒ 4 (coupled) length degrees of freedom frequency response of 4 sensors

Today

○ Control system requirements:

 Noise inputs: couplings via optical plant; sensing noise; actuator response

 GAIN CONSTRAINTS

○ Matrix solutions for MIMO system

O Differential-mode (GW) loops

• Non-diagonal (or "crossed") controller \Rightarrow feedforward path

○ Common-mode loops

• Nested loops \Rightarrow closed loops within closed loops

○ GW strain sensitivity: noise contributions

LENGTH SENSING MATRIX

Signals in amperes of photocurrent per meter of length offset assuming current best know LIGO optical parameters using FFT model to include mirror losses

Length Sen	sor	Length Degree of Freedom				
Port (Sensor)	Φ_{RF}	L _D	l _D	L _C	l _C	
Anti (S _{AQ})	Q	$\frac{-9.7 \times 10^9}{1 + s/(2\pi \times 90 \text{ Hz})}$	-7.4×10^{7}	0	0	
Refl (S _{RQ})	Q	$\frac{6.3 \times 10^4}{1 + s/(2\pi \times 90 \text{ Hz})}$	7.2×10^{6}	0	0	
Pick-off (S _{PQ})	I	$\frac{4.5 \times 10^3}{1 + s/(2\pi \times 90 \text{ Hz})}$	5.3×10^5	0	0	
Refl (S _{RI})	I	0	0	$\frac{2.2 \times 10^{10}}{1 + s/(2\pi \times 0.8 \text{ Hz})}$	$\frac{1.4 \times 10^8}{\frac{(1 + s/(2\pi \times 3.0 \text{ Hz}))}{1 + s/(2\pi \times 0.8 \text{ Hz})}}$	
Pick-off (S _{PI})	Ι	0	0	$\frac{-5.3 \times 10^8}{1 + s/(2\pi \times 0.8 \text{ Hz})}$	-1.6×10^{6} $\frac{(1 - s/(2\pi \times 0.9 \text{ Hz}))}{1 + s/(2\pi \times 0.8 \text{ Hz})}$	

CONTROL TOPOLOGY

NOISE INPUTS: SEISMIC NOISE

Correlation model

D.o.f.	rms	р-р	ratio
Ground	1.9 μm	12.4 µm	6.5
RM s.p.	2.0 μm	12.8 µm	6.4
<i>Lm</i> s.p.	3.0 μm	19.0 µm	6.3
<i>Lp</i> s.p.	3.3 µm	20.0 µm	6.0
<i>lm</i> s.p.	9 nm	63.0 nm	7.0
<i>lp</i> s.p.	20 nm	163 nm	8.1

SEISMIC NOISE: VERTICAL MODE

- $\bigcirc f_V = 13$ Hz (19 Hz for beamsplitter)
- \bigcirc **Q** = 2000 (may be closer to 1000 sitting on stack)
- \bigcirc Coupling: $s_V = \xi \cdot \tilde{z}_g(f_V) \cdot T_{zz} \cdot \sqrt{Q_V \cdot f_V};$
 - $z_g = 10^{-9} \text{ m}_{\text{rms}}; T_{zz} = 0.5$

 \bigcirc ξ: bulk propagation (α (n–1)) + surface (β) effects

Degree of freedom	Displacement (m _{rms})	Coupling coefficient (ξ)	Coupling due to
Lm	6 × 10 ⁻¹¹	7×10 ⁻⁴	Earth's curvature
Im	1 × 10 ⁻⁹	1 × 10 ⁻²	20 mrad wedge angle (ITM)
Lp	6 × 10 ⁻¹¹	7 × 10 ⁻⁴	Earth's curvature
lp	2 × 10 ⁻⁹	1 × 10 ⁻² 2 × 10 ⁻²	20 mrad wedge angle (ITM), & 20 mrad surface angle (RM)

SENSING NOISE: SHOT NOISE

Port power levels predicted by 'baseline' FFT model

Also used to compute DC plant matrix elements

Port/Sensor	Total Power (C + SB)	Noise current (A/\/Hz)	Equivalent Length Noise (DC)
Antisym./S _{AQ}	0.30 + 0.86 = 1.16 W	4.19×10^{-10}	$\delta \tilde{L}_m = 4.3 \times 10^{-20} \text{ m/} \sqrt{\text{Hz}}$
RC pickoff/S _{PI}	65 + 6 = 71 mW	9.05 × 10 ⁻¹¹	$\delta \tilde{l}_p = 5.6 \times 10^{-17} \text{ m/} \sqrt{\text{Hz}}$
RC pickoff/S _{PQ}		8.67 × 10 ⁻¹¹	$\delta \tilde{l}_m = 1.7 \times 10^{-16} \text{ m/}\sqrt{\text{Hz}}$
Reflected/S _{RI}	0.13 + 0.16 = 0.29 W	2.04×10^{-10}	$\delta \tilde{L}_p = 9.1 \times 10^{-21} \text{ m/}\sqrt{\text{Hz}}$
Reflected/S _{RQ}		1.53 × 10 ⁻¹⁰	$\delta \tilde{l}_m = 2.1 \times 10^{-17} \text{ m/}\sqrt{\text{Hz}}$

GAIN CONSTRAINTS: RESIDUAL FLUCTUATIONS

□ IFO Length/ phase

Degree of freedom	Residual deviation	Units	Coupling mechanism
$\delta Lm + (\pi/(2F))\delta lm$	1 × 10 ⁻¹³	m _{rms}	Amplitude noise coupling
$\delta lm + (\pi/(2F))\delta Lm$	1 × 10 ⁻⁹	m _{rms}	Amplitude noise coupling
$\delta(k_l \cdot Lp)$	9×10 ⁻⁶	rad _{rms}	Arm cavity power reduction
$\delta(k_l \cdot lp)$	7 × 10 ⁻⁴	rad _{rms}	Arm cavity power reduction

Laser frequency

GAIN CONSTRAINTS: MIRROR INTERNAL RESONANCES

- Require open loop gain <1 at internal mode frequency to ensure stability
- □ Force applied at magnets is transmitted to mirror surface (calculated by D. Coyne using FEA model with

Q=1.3M)

	Mode description	Resonant frequency (Hz)	Transmissibility (m/N)	Maximum servo gain
ses	Non-axisymmetric, astig- matic mode	6595	2×10^{-10}	-6 dB
est Mas & RN	First symmetric (drum head) mode	9206 (calc.) 9476 (meas.)	2×10 ⁻⁴	-131 dB
i F	Second symmetric mode	14475	3 × 10 ⁻⁶	-103 dB
litter	Non-axisymmetric, astig- matic mode	3785	3×10 ⁻⁸	-30 dB
eamspl	Symmetric (drum head) mode	5578	1.6 × 10 ⁻³	-133 dB
ă	Second symmetric mode	14630	9 × 10 ⁻⁷	-85 dB

 Solution: 80dB stopband filter centered at 9.4kHz (+ 20 dB from anti-alias filter)

GAIN CONSTRAINTS: MISCELLANEOUS

- Phase Margins: designed to be at least 50 degrees for stability of response around unity gain frequency
 - effect of delays included in predicted phase margin (though not explicitly in Matlab models)
- Electronics noise
 - Three significant noise sources, sum must be '10x below' SRD sensitivity:
 - photodetector electronics noise
 - ADC input voltage noise
 - DAC output voltage noise

Actuator dynamic ranges

- ranges of frequency actuators important for designing crossovers
- suspensions: supposed to have sufficient range by design (BS & RM ranges have recently been increased so that this is so)

SUMMARY OF GAIN REQUIREMENTS

Degree(s) of freedom	Frequency range	Gain	Reason
All	DC	50 — 200 dB	achieve required residual devia- tion
Lm, Lp, lp (lm)	9.5 kHz (5.6 kHz)	< –135 dB	internal resonance of RM, TMs (BS)
Lm, lm, lp	13 Hz	> 20 dB reso- nant gain	vertical mode of suspensions
lm	> 20 Hz	< 0 dB	sensing noise at pick-off cou- ples to GW signal via off-diago- nal plant element
Lp	> 40 Hz	> –60 dB relative to overall loop gain	achieve required frequency noise suppression above 40 Hz
Lp	> 40 Hz	> –80 dB relative to overall loop gain	Lp couples to GW signal via TM suspensions imbalance
lp	DC	> 100 dB	residual lp couples to GW signal via demodulator phase error

MULTI-INPUT MULTI-OUTPUT CONTROL SYSTEM MODEL

$$\hat{M} = \hat{1} - \hat{A}\hat{C}\hat{P}$$

□ plant matrix block-diagonal ⇒ treat common-mode and differential-mode d.o.f. independently

DIFFERENTIAL-MODE SYSTEM BLOCK DIAGRAM

Lm System Blocks

Lm Open-loop Gain

Im SYSTEM BLOCKS

Im OPEN-LOOP GAIN

PERFORMANCE OF DIFFERENTIAL-MODE LOOPS

Performance Data	Lm	lm	Units
Gain at DC	205	110	dB
Unity gain bandwidth	330	43	Hz
Phase margin	66	55	degrees
Gain at 9.48 kHz (5.58 kHz)	-140	(–141)	dB
Residual length deviation	10 ⁻¹⁴	5×10^{-12}	m _{rms}
Control signal at coil driver	3.1	0.13	μm _{rms}

Non-diagonal Control Matrix At Work

\bigcirc add *Im* control signal to *Lm* to cancel feedthrough of shot noise at S_{Pl} to GW signal

COMMON-MODE SYSTEM BLOCK DIAGRAM

FREQUENCY CONTROL TOPOLOGY

○ Lp/frequency servo has three actuation paths

- *Lp* ➡ ETMs
- $\delta v \Rightarrow$ mode cleaner length \Rightarrow PSL wideband actuator
- $\delta v \Rightarrow$ additive offset of mode cleaner servo error point

Lp/MCleng/MCaddoff OPEN-LOOP GAINS

PERFORMANCE SUMMARY FOR COMMON-MODE LOOPS

Performance Data	<i>Lp</i> /df	lp	Units
Gain at DC	180	120	dB
Unity gain bandwidth	21000	130	Hz
Phase margin	94	70	degrees
<i>Lp</i> /MC length crossover frequency	3.7		Hz
MC length/additive offset crossover freq.	650		Hz
Gain at 9.48 kHz	-200	-160	dB
Residual phase deviations	6 × 10 ⁻⁷	4 × 10 ⁻⁵	radian _{rms}
Error signals	0.2	0.03	V _{rms}
Drive signals	Lp: 3.1 MC leng: 1200 MC addoff: 2.3	lp: 1.1	μm _{rms} Hz _{rms} mHz _{rms}

RESIDUAL FREQUENCY Noise

GW STRAIN SENSITIVITY

TEST MASS DAMPING PATHS

Loop	Sensitivity @ 40 Hz (m/√Hz)	GW channel coupling	Damping path gain req. @ 40 Hz	Damping servo
Recycling	6 × 10 ⁻¹⁷	5%	–35 dB	Zero @ DC
cavity				2nd order Chebyshev @1 Hz (+ pole@20 Hz for stability)
Michelson	1.5×10^{-16}	100%	–65 dB	Zero @DC
				2nd order Chebyshev @1 Hz
				4th order elliptic @ 20 Hz, 30 dB stop

Im and Ip Loops with TM DAMPING

○ Im open-loop gain

○ *lp* open-loop gain

LOOKING AHEAD...

Detection mode controls

- \bigcirc Noise couplings \Rightarrow estimates?
- \bigcirc Optical plant \Rightarrow as-built? stability? variations?
- \bigcirc Controllers \Rightarrow nearly optimum? optimization?
- \bigcirc Actuators \Rightarrow cross-couplings? variations?

\Box Robust control \leftarrow uncertainties

- \bigcirc Model errors, parameter drifts \Rightarrow system identification (sysID)
- Identify control law, control variables
- Characterize control system elements
- Adaptive controls

Lock Acquisition

