

LIGO II Concept and Performance

David Shoemaker MIT LIGO PAC 19 November 1999

G990120-00-R

Outline

- Conceptual design
- Physics Reach
- Key technical elements
- Planning (Gary Sanders)

Sensitivity of LIGO I, LIGO II

- Sensing noise
 - » greater laser power
 - » signal recycling
 - » (radiation pressure)
- Thermal noise
 - » silica ribbon suspension
 - » sapphire test mass
- Seismic noise
 - » 10 Hz 'brick wall'
 - » VLF motion reduced
- Net improvement:
 - » ~50 in rms
 - » ~5 in bandwidth
 - » ~30 in narrow-band strai

G990120-00-R

Physics Reach

- Compact Binaries: Inspiral & Merger
 - » Masses, Spins, Distance, Location on sky to ~1 degree
- Neutron-Star Births (supernovae)
 - » most certain source; can see to 450Mpc, 1/month
- Neutron-star Spins (pulsars)
 - » Very uncertain rates; guess 800Mpc, ~1/week
- BH-BH Inspiral and merger
 - » Rates Highly Uncertain. Best estimates:
 - » LIGO-I: 100 Mpc, 1/year. LIGO-II: z=0.5, 1/hour
 - » (one day of LIGO II data equivalent in reach to entire LIGO I run)
- Stochastic Background from Big Bang
 - » LIGO-I: Ω=10⁻⁵ LIGO-II: Ω=3x10⁻⁹
- SURPRISES!

Configuration: signal recycling

- LIGO I: Power-recycled Fabry-Perot Michelson
- addition of Signal Recycling: allows adaptation of sensitivity to interesting frequency band
- make resonant, or anti-resonant, cavity for GW signal 'sidebands'
- significant development needed, underway

Laser power: to quantum limit

- optimize power given overall design
 - » shot noise decreasing as sqrt(Power)
 - » radiation pressure increasing as sqrt(Power)
- 180 W, nominally with system similar to LIGO I

Thermal Management

- 0.7 MW in arm cavities, 5 kW in central interferometer
- auxiliary optics: small beams, high intensities
- thermal focussing in Test Mass optics
 - » additional heat as corrective measure

Test Mass optics: sapphire

- LIGO I: fused silica, 10 kg
- LIGO II: sapphire, 30 kg
- thermal noise from internal modes of test mass: sensitivity floor
- radiation pressure: desire for greater mass
- sapphire excellent (on most pieces of paper)
- significant development item; uncertainty of success
- fallback/interim (if needed): fused silica

Suspensions: multiple pendulums

- LIGO I: simple wire loop suspension
- multiple pendulum suspensions evident path
 - » improved seismic isolation
 - » better control distribution
- fused silica suspension fibers
 - » lower loss material, less thermal noise
 - » ribbon cross-section reduces further energy stored along optic axis
- GEO to supply design, help with engineering

Isolation systems: 10 Hz cutoff

- LIGO I: lossy springs under compression, large masses: Simple Harmonic Oscillators above resonance
- want to benefit from reduced thermal noise, better sensing
- choose 10 Hz as cutoff: good compromise given other noise sources, most anticipated signals
- control band (0 Hz to 10 Hz) very important: reduced velocity for acquisition, reduced control authority at test masses
- two solutions under study
 - » 'soft': VIRGO-like (and inspired) multiple pendulum solution
 - » 'stiff': high-gain servos which 'slave' optics table to quiet seismometers
- development of ideas, prototypes, to determine best course
- evaluation in April '00

Seismic Isolation Concepts

Figure A7. Two Seismic Isolation concepts for LIGO II.

G990120-00-R

LIGO II Reference Design Parameters / LIGO I Comparison

Subsystem and Parameters	LIGO II Reference Design	LIGO I Implementation
Comparison With LIGO I Top Level Parameters		
Strain Sensitivity [rms, 100 Hz band]	2 x 10 ⁻²³	10 ⁻²¹
Displacement Sensitivity [rms, 100 Hz band]	8 x 10 ⁻²⁰ m	4 x 10 ⁻¹⁸ m
Fabry-Perot Arm Length	4000 m	4000 m
Vacuum Level in Beam Tube, (Vacuum Chambers)	< 10 ⁻⁶ , (< 10 ⁻⁷) torr	< 10 ⁻⁶ torr
Laser Wavelength	1064 nm	1064 nm
Optical Power at Laser Output	180 W	10 W
Optical Power at Interferometer Input	125 W	5 W
Power Recycling Factor	80 x	30 x
Input Mirror Transmission	3%	3%
End Mirror Transmission	15 ppm	15 ppm
Arm Cavity Power Loss on Reflection	1%	3 %
Light Storage Time in Arms	0.84 ms	0.84 ms
Test Masses	Sapphire, 30 kg	Fused Silica, 11 kg
Mirror Diameter	28 cm	25 cm
Test Mass Pendulum Period	1 sec	1 sec
Seismic Isolation System	Active/Passive, 6 stage	Passive, 4 stage
Seismic Isolation System Horizontal Attenuation	10 ⁻⁸ (10 Hz)	≥10 ⁻⁵ (100 Hz)
Maximum Background Pulse Rate	1 per 10 years, triple interferometer coincidence	1 per 10 years, triple interferometer coincidence

G990120-00-R

Noise Anatomy of LIGO II

G990120-00-R

LSC Working Groups

- LSC central to development of LIGO II concept, continuing R&D
- Many institutions contributing; coordinators in R&D domains are:
- Configurations: Ken Strain (Glasgow) chair
 - » Sensing scheme: MIT; Science prototype: GEO; Control prototype: Caltech
- Lasers&Optics: Eric Gustafson (Stanford) chair
 - » Core optics: Caltech; Compensation, photodiodes: MIT; Thermal modeling: HP; Ancillary optics: U Florida; Laser: Stanford; PSL: Hanford
- Suspensions/Isolations: David Shoemaker (MIT) chair
 - » Testmass materials: Stanford; TM Integration, Fiber Development, Suspension development: GEO; Isolation systems: Many; Controls: Stanford; System tests: MIT
- Change in mode is needed --- many milestones approaching!

LSC/Lab in more detail

Institution	Heads	FTE	LIGO I - Heads	LIGO I - FTE
ACIGA -Australia	23	14.9	0	0
Caltech - CACR	3	0.7	3	0.7
Caltech - CaRT	8	3.4	8	3.4
Caltech - CEGG	2	1.6	1	0
Cornell	2	1.8	2	1.8
Univ of Florida	12	9.2	12	9.2
GEO	34	19.2	2	0.3
NAOJ - TAMA	3	1.1	0	0
JILA	6	3.1	0	0
LSU	5	3.4	0	0
Lousiana Tech	6	1.2	6	1.2
Univ of Michigan	2	1.5	2	1.5
Moscow State University	11	10	0	0
Oregon University	7	4.4	7	4.4
Institute of Applied Physics - Russia	12	9.5	0	0
Stanford University	21	14.3	0	0
Syracuse	5	5	1	1
Univ of Texas - Brownsville	2	0.5	2	0.5
Univ of Wisconsin - Milwaukee	7	4.5	7	4.5
Total : non LIGO Laboratory	171	109.3	53	28.5
LIGO Hanford	12	12	12	12
LIGO Livingston	7	7	7	7
LIGO MIT	17	17	17	17
LIGO Caltech	52	51	52	51
Total : LIGO Laboratory	88	87	88	87
Total LSC	259	196.3	133	115.5

G990120-00-R