Astrophysics

.

and

Reduction of Data Sets

Natalia Zotov

Lousisana Tech University

HG0-6990141-00-Z

Areas of Interest

I. ASIS: Astrophysical Source Identification & Signatures

Possible areas

r-modes of oscillation in young neutron stars

Binary systems with precession included

Binary systems

Fisher information matrix established for some cases:

Binary systems, neglecting spins Binary systems, including spins, but neglecting spin-induced precession

Preliminary questions

What is the rate of precession for a given binary system?

How many precession cycles will be seen in the frequency band where 90% of the energy will be seen by LIGO I?

Mathematics needed:

Post-Newtonian approximations to General Relativity Papers by Finn, Cutler & Flanagan, et al., available as guides

BINARY SYSTEMS Neutron stars, black holes, or neutron star-black hole

Binary System Parameters

Observable Gravitational Wave Parameters

Examples:

Masses Spins Orbital elements, e.g. eccentricity, semi-major axis Examples:

Amplitude Polarization Phase Rates of change of these parameters

Establish links: Express each observable parameter as a function of binary system parameters

Set up "Fisher Information Matrix" containing numerical correspondences between values of waveform parameters and errors on binary system parameters

II. Detector Characterization Working Group

Performance Characterization Transient Analysis Reduced Data Sets Data Set Simulation

Reduced Data Sets

Data compression algorithms needed

Loss-free compression of data with Gaussian noise - better than gzip (~50% reduction)

Ideas from Sam Finn,

e.g. use a linear filter to whiten noise and make better use of upper bits

and Li-He Zou, LaTech Professor of EE areas of expertise: image compression

Good area for student involvement

Graduate students – help design and implement algorithms using different techniques, and test

Undergraduates – port code from Matlab to gnu C