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GWs from Accretion Disk Instabilities

1 Introduction

We derive analytic estimates for the gravitational wave (GW) emission from the following analytic accretion
disk instability models in the context of Collapsar-type gamma-ray bursts and black-hole (BH) forming core-
collapse supernovae:

• The suspended-accretion-driven disk instability proposed by van Putten [1, 2]. In this instability,
turbulence in a thick accretion torus is driven by strong coupling between the torus and the ergosphere
of the central BH by MHD effects. In this picture, the quadrupole components of the disk turbulence
lead to GW emission that (via the strong coupling) spin down the BH. The strong coupling and
the energetics of the associated GW emission proposed by van Putten are generally regarded as too
optimistic (possibly by orders of magnitude). Nevertheless, we include this model, since it makes
useful, falsifiable predictions.

• Fragmentation instability and inspiral as proposed by Piro & Pfahl [3]. In the Piro & Pfahl model,
gravitational instability leads to fragmentation of parts of the outer accretion torus around a BH formed
in the collapse of a massive star. The fragments condense to a ‘blob’ of neutronized matter that then
spirals in due to viscosity and/or GW emission.

In the following, we work in physical units, including all relevant factors of the gravitational constant G and
of the speed of light c. Accompanying this technical report are two python scripts, vanPuttengw.py and
pirogw.py, that implement the models described here and provide both GW polarizations as output.

2 Suspended-Accretion Quadrupole Disk Instability

Following along the lines of van Putten’s ideas, we assume a spinning Kerr BH with dimensionless Kerr
spin parameter a? = (c/G)JBH/M

2
BH (0 ≤ a? < 1) with an accretion disk/torus of mass Mdisk. The disk

extends to the radius of the innermost stable orbit [4],

RISCO =

(
G

c2

)
MBH

(
3 + Z2 ∓ [(3− Z1)(3 + Z1 + 2Z2)]

1/2
)
, (1)

Z1 = 1 + (1− a?2)1/3
[
(1 + a?)1/3 + (1− a?)1/3

]
, (2)

Z2 =
[
3a?2 + Z2

1

]1/2
, (3)

where the ∓ sign indicates prograde and retrograde orbits, respectively. We will assume that the binary
orbits in the same direction as the BH spin and thus take the minus sign in equation 1. Disk and BH are
assumed to be coupled via strong magnetic fields and MHD turbulence in the disk is assumed to be driven
through this coupling. The inner disk near the ISCO is expected to be neutrino cooled and very thin. Further
out, at r0 + RISCO (where r0 = 100 km may be reasonable), the disk is a thick torus. We assume that
turbulence in the torus leads to two overdense regions (which, in itself, is unlikely, since turbulent power
will cascade to small scales) with masses M1 = M2 = εMdisk. ε ≈ 0.01− 0.5 (the latter is very unlikely).
These two ‘clumps’ form a ‘binary’ with separation 2(r0 + RISCO) that efficiently emits GWs and would
normally lose J by GW emission, leading to inspiral. The BH is located at the center of our coordinate
system and each of the clumps is located at a distance r0 +RISCO from the BH. Here, following van Putten,
we assume that the lost energy and angular momentum is replenished by coupling to the central BH, so the
BH loses J and spin energy. This leads to an incremental change of RISCO and, consequentially, of the
binary separation 2(r0 +RISCO).
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2.1 hlm and J̇ from the Newtonian Binary Approximation

We assume that the BH angular momentum is oriented in the +z-direction. The two overdense regions in
the torus orbit in the xy-plane with angular velocity Ω. Furthermore, we assume that the two masses are
equal M1 = M2 ≡ m and orbit in a circular orbit of radius r0 + RISCO ≡ d. We can compute the reduced
mass quadrupole momentum of the system, defined as

Iij =
∑
A

mA(xAjxAj −
1

3
δijr

2
A), (4)

where A denotes the sum over all particles in the system. Thus

Iij = md2

 1/3 + cos 2Ωt sin 2Ωt 0
sin 2Ωt 1/3− cos 2Ωt 0

0 0 −2/3

 , (5)

Ïij = 4md2Ω2

 − cos 2Ωt − sin 2Ωt 0
− sin 2Ωt cos 2Ωt 0

0 0 0

 , (6)

...
I ij = 8md2Ω3

 sin 2Ωt − cos 2Ωt 0
− cos 2Ωt sin 2Ωt 0

0 0 0

 . (7)

The gravitational wave signal emitted by the binary system and the change in angular momentum and energy
are given by

hTTij =
2

D

G

c4
ÏTTkl

∣∣∣∣
t−r/c

,
dJi
dt

= −2

5

G

c5
εijk〈Ïjm

...
Imk〉

∣∣∣∣
t−r/c

,
dE

dt
= −1

5
〈
...
I jk

...
I jk〉

∣∣∣∣
t−r/c

, (8)

where we indicate that the right-hand side expressions are to be taken at the retarded time t− r/c.
Thus, in this Newtonian binary approximation we have

hTTij =
8md2Ω2

D

G

c4

 cos 2Ω(t− r/c) sin 2Ω(t− r/c) 0
sin 2Ω(t− r/c) − cos 2Ω(t− r/c) 0

0 0 0

 , (9)

dJGW

dt
= −128

5
m2d4Ω5G

c5
, (10)

dEGW

dt
= PGW = −128

5
m2d4Ω6G

c5
. (11)

2.2 The coupled system of Ordinary Differential Equations

We assume that the ‘binary’ stays at a fixed radius. Angular momentum J lost to GW emission is provide
from the BH spin. As a consequence, the BH is spun down and RISCO changes. We set J̇BH = J̇GW. The
change in the BH mass is

ṀBH =
PGW

c2
, (12)
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since the gravitational mass of the BH contains the contribution due to its rotational energy. The change in
RISCO can then be computed by differentiating equation 1,

dRISCO

dt
= ṘISCO =

(
G

c2

)[
ṀBH

(
3 + Z2 −

√
(3− Z1)(3 + Z1 + 2Z2)

)
+MBH

(
Ż2 +

(Z1 + Z2)Ż1 − (3− Z1)Ż2√
(3− Z1)(3 + Z1 + 2Z2)

)]
, (13)

where we can express Z1, Z2 and their derivatives as functions of JBH, MBH, J̇BH, ṀBH only,

Ż1 =
c
(
MBHJ̇BH − 2JBHṀBH

)
3G3M7

BH

(
1− a?2

)4/3 [
3c2J2

BH

(
(1 + a?)2/3 − (1− a?)2/3

)
−2cGJBHM

2
BH

(
(1 + a?)2/3 + (1− a?)2/3

)
+G2M4

BH

(
(1− a?)2/3 − (1 + a?)2/3

)]
, (14)

Ż2 =
3c2JBHMBHJ̇BH − 6c2J2

BHṀBH +G2M5
BHZ1Ż1

G2M5
BH

√
3c2J2

BH

G2M4
BH

+ Z2
1

. (15)

These expressions allows us to calculate the change in RISCO when the mass and angular momentum of the
central BH change.

2.3 Application of the coupled system

At every time t, Ïij and, thus, hTTij depend on (i) the orbital radius of the ‘binary’, d = r0 + RISCO, (ii)
the mass m of the chunks (assumed to be constant), and (iii) on the angular velocity, which, according to
Kepler’s law, we set to

Ω =

√
GM

d3
. (16)

Let us assume that the mass of the chunks forming the ‘binary’ is negligible with respect to the mass of
the central black hole, in which case Ω =

√
GMBH/(r0 +RISCO)3. The coupled system of ODEs is then

formed by equations 10, 12 and 13, with d = r0 + RISCO and Ω as in equation 16. PGW in equation 12
is given by equation 11. This system describes the evolution of RISCO, JBH and MBH. We integrate the
coupled system of ODEs with a fourth-order Runge-Kutta integrator.
Note that once all spin has been extracted from the hole, the ‘binary’ will inspiral. However, we stop our
integration when the BH is completelly spun down and do not calculate the subsequent chirp.

2.4 Astrophysically Meaningingful Parameters

Mass BH of mass MBH = 5− 10M�
Initial BH spin a? = 0.3− 0.95
Fragment mass Assume Mdisk = 1.5M�, mchunk = εMdisk with ε = 0.01− 0.2

Const. separation of torus from ISCO r0 = 100 km
End integration When JBH = 0 or pre-specified run time is reached
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Figure 1: Waveform computed following the van Putten model. The parameters of the system are MBH =
10M�, a? = 0.95, ε = 0.2. The strain corresponds to a face-on, optimally-oriented system situated at 10

kpc. The main plot shows the absolute magnitude of the strain |h| =
√
h2+ + h2× and the inset plot shows

the two polarizations zooming into the first 0.1 s of evolution.

2.5 Usage of the python script

Code usage: $ python vanPutten.py
The code section below #physical parameters allows to specify the physical parameters of the sys-
tem as defined in subsection 2.4. The colatitude and azimuth of the system can be specified as well. The
code section under #parameters allows to change the total run time (in seconds) of the integration (pro-
vided that the BH is not completely spun down, in which case the integration stops) as well as the sampling
time dt of the output.
The script produces two output files:

• pmvp.dat is a diagnosis and debug output file, containing the following variables:
time RISCO JBH MBH a? Erad h+ h×

• M*a*eps*.dat, where the *’s denote the values of the physical parameters MBH, a? and ε given
as input, is the production output file, containing:
time h+ h×

An example of the antichirp-like signal obtained for the van Putten model is shown in figure 1.

3 Torus Fragmentation Instability and Inspiral of a Single Overdense Blob

If the core-collapse supernova mechanism fails to re-energize the stalled shock (see, e.g., [5]), the pro-
toneutron star collapses to a BH on an accretion timescale [6]. Provided sufficient angular momentum, a
massive accretion disk/torus may form around the nascent stellar-mass BH. This scenario may lead to a
collapsar-type gamma-ray burst or an “engine driven” supernova [7].
The inner part of the disk is geometrically thin due to efficient neutrino cooling, but outer regions are thick
and may be gravitationally unstable to fragmentation at large radii. We implement the expected gravitational
radiation from such a system, inspired by the discussion by Piro & Pfahl [3].
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We assume a central BH of mass MBH surrounded by a Keplerian accretion disk with orbital frequency
Ω = (GMBH/r

3)1/2 and vertical scale height H . The accretion rate is Ṁ = 3πνΣ, where Σ is the disk’s
surface density, ν = αcSH the usual viscosity prescription and cS the isothermal sound speed. We assume
that H/r = µ is a fixed parameter.

3.1 Gravitationaly instability and fragmentation

Gravitational instability arises when

Q ≡ ΩcS
πGΣ

< Qcrit ' 1 , (17)

Under given circunstances, numerical simulations have shown that gravitational instability leads to frag-
mentation. As explained in [3], we can identify the quantity (QH)2Σ with the mass of a bound clump if
cooling is rapid enough to permit collapse to high densities.
Various possible cooling mechanisms in the disk can be studied, among them radiative diffusion, neutrino
cooling processes, and photodisintegration. Photodisintegration of 4He will absorb sufficient energy quickly
enough to allow fragmentation. Thus, it may be a very effective coolant, permitting fragmentation over a
small range of radii near the location where Q = Qcrit in the perturbed disk. This allows us to estimate the
mass of the bound fragment as

Mf ≈ 0.2
( η

0.5

)3 MBH

3
. (18)

3.2 Migration and associated gravitational waves

If the fragment is massive enough to form a bound object and open a gap in the accretion disk, it migrates
inwards, forming an inspiralling binary with the central BH. The loss of angular momentum is due to dissi-
pation within the disk and to the emission of gravitational waves. The viscous migration happens on a the
viscous timescale,

tν ≈
1

αν2Ω
. (19)

Loss of angular momentum in the form of gravitational waves causes inspiral on a time that can be estimated
to first order via the quadrupole formula

tGW =
5

64Ω

(
GMΩ

c3

)−5/3

, (20)

whereM is the chirp mass of the system formed by BH plus fragment. The evolution of the orbit can be
computed by simply solving the differential equation

dr

dt
= −r

(
1

tGW
+

1

tv

)
(21)

The integration of equation 26 allows us to compute the chirp-like gravitational wave emission expected
from this system. We make use of equation 9 where D is the distance between the central BH and the bound
fragment. The ODE integration is implemented with a fourth-order Runge-Kutta integrator.
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3.3 Astrophysically Meaningful Parameters

Mass BH of mass MBH = 3− 10M�
Viscosity Standard value of α = 0.1 [3]

Geometrical parameter η = 0.3− 0.6 [3]
Mass of the bound fragment The approximate factor 0.2 in equation 23 can be varied from 0.2− 0.5

Starting Radius Start at r = 100rS , where rS = GM
c2

is the gravitational radius
End integration close to the ISCO

3.4 Usage of the python script

Code usage: $ python pirogw.py
The code section below #physical parameters allows to specify the physical parameters of the sys-
tem as defined in subsection 3.7. The colatitude and azimuth of the system can be specified as well. The code
section under #parameters allows to change the total run time (in seconds) of the integration (provided
that the orbital radius is larger than 2.5RISCO where we take a multiple of the ISCO radius of a non-spinning
black holeRISCO = 6GMBH/c

2 as a limit for the integration) as well as the sampling time dt of the output.
The script produces two output files:

• piro.dat is a diagnosis and debug output file, containing the following variables:
time r (cm) r (rS) h+ h× Ω tGW tv

• piroM*eta*fac*.dat, where * denote the values of the physical parameters MBH, η and the
factor in the RHS of equation 23 given as input, is the production output file, containing:
time h+ h×

An example of the chirp-like signal obtained for the Piro & Pfahl [3].
We assume a central BH of mass MBH surrounded by a Keplerian accretion disk with orbital frequency
Ω = (GMBH/r

3)1/2 and vertical scale height H . The accretion rate is Ṁ = 3πνΣ, where Σ is the disk’s
surface density, ν = αcSH the usual viscosity prescription and cS the isothermal sound speed. We assume
that H/r = µ is a fixed parameter.

3.5 Gravitationaly instability and fragmentation

Gravitational instability arises when

Q ≡ ΩcS
πGΣ

< Qcrit ' 1 , (22)

Under given circunstances, numerical simulations have shown that gravitational instability leads to frag-
mentation. As explained in [3], we can identify the quantity (QH)2Σ with the mass of a bound clump if
cooling is rapid enough to permit collapse to high densities.
Various possible cooling mechanisms in the disk can be studied, among them radiative diffusion, neutrino
cooling processes, and photodisintegration. Photodisintegration of 4He will absorb sufficient energy quickly
enough to allow fragmentation. Thus, it may be a very effective coolant, permitting fragmentation over a
small range of radii near the location where Q = Qcrit in the perturbed disk. This allows us to estimate the
mass of the bound fragment as

Mf ≈ 0.2
( η

0.5

)3 MBH

3
. (23)
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3.6 Migration and associated gravitational waves

If the fragment is massive enough to form a bound object and open a gap in the accretion disk, it migrates
inwards, forming an inspiralling binary with the central BH. The loss of angular momentum is due to dissi-
pation within the disk and to the emission of gravitational waves. The viscous migration happens on a the
viscous timescale,

tν ≈
1

αν2Ω
. (24)

Loss of angular momentum in the form of gravitational waves causes inspiral on a time that can be estimated
to first order via the quadrupole formula

tGW =
5

64Ω

(
GMΩ

c3

)−5/3

, (25)

whereM is the chirp mass of the system formed by BH plus fragment. The evolution of the orbit can be
computed by simply solving the differential equation

dr

dt
= −r

(
1

tGW
+

1

tv

)
(26)

The integration of equation 26 allows us to compute the chirp-like gravitational wave emission expected
from this system. We make use of equation 9 where D is the distance between the central BH and the bound
fragment. The ODE integration is implemented with a fourth-order Runge-Kutta integrator.

3.7 Astrophysically Meaningful Parameters

Mass BH of mass MBH = 3− 10M�
Viscosity Standard value of α = 0.1 [3]

Geometrical parameter η = 0.3− 0.6 [3]
Mass of the bound fragment The approximate factor 0.2 in equation 23 can be varied from 0.2− 0.5

Starting Radius Start at r = 100rS , where rS = GM
c2

is the gravitational radius.
End integration close to the ISCO.

3.8 Usage of the python script

Code usage: $ python pirogw.py
The code section below #physical parameters allows to specify the physical parameters of the sys-
tem as defined in subsection 3.7. The colatitude and azimuth of the system can be specified as well. The code
section under #parameters allows to change the total run time (in seconds) of the integration (provided
that the orbital radius is larger than 2.5RISCO where we take a multiple of the ISCO radius of a non-spinning
black holeRISCO = 6GMBH/c

2 as a limit for the integration) as well as the sampling time dt of the output.
The script produces two output files:

• piro.dat is a diagnosis and debug output file, containing the following variables:
time r (cm) r (rS) h+ h× Ω tGW tv

• piroM*eta*fac*.dat, where * denote the values of the physical parameters MBH, η and the
factor in the RHS of equation 23 given as input, is the production output file, containing:
time h+ h×

An example of the chirp-like signal obtained for the Piro & Pfahl model is shown in figure 2.
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Figure 2: Waveform computed following the Piro & Pfahl model. The parameters of the system are MBH =
8M�, η = 0.3, factor for the mass of the bound fragment = 0.2. The strain corresponds to a face-on,
optimally-oriented system situated at 10 kpc.
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