We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them could be a test, part of a “blind injection challenge”. With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected to be available within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present
Swift follow-up observations of candidate gravitational-wave transient events

3

the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.

Subject headings: Gravitational waves, Ultraviolet: general, X-rays: general

1 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK
2 MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
3 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
4 The Pennsylvania State University, University Park, PA 16802, USA
5 Eötvös Loránd University, Budapest, 1117 Hungary
6 LIGO - California Institute of Technology, Pasadena, CA 91125, USA
7 California State University Fullerton, Fullerton CA 92831 USA
8 SUPA, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
9 Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAP) Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
10 INFN, Sezione di Napoli a ; Università di Napoli Federico II b ; Complesso Universitario di Monte S.Angelo, I-80126 Napoli; Università di Salerno, Fisciano, I-84084 Salerno; Italy
11 LIGO - Livingston Observatory, Livingston, LA 70754, USA
12 Cardiff University, Cardiff, CF24 3AA, United Kingdom
13 University of Sannio at Benevento, I-82100 Benevento, Italy and INFN (Sezione di Napoli), Italy
14 Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany
15 Leibniz Universität Hannover, D-30167 Hannover, Germany
16 Nikhef, Science Park, Amsterdam, the Netherlands; VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
17 National Astronomical Observatory of Japan, Tokyo 181-8588, Japan
18 University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
19 INFN, Sezione di Pisa a ; Università di Pisa b ; I-56127 Pisa; Università di Siena, I-53100 Siena; Italy
20 University of Florida, Gainesville, FL 32611, USA
21 INFN, Sezione di Roma a ; Università ‘La Sapienza’ b , I-00185 Roma, Italy
22 GOGO - Hanford Observatory, Richland, WA 99352, USA
23 University of Birmingham, Birmingham, B15 2TT, United Kingdom
24 Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Golm, Germany
25 Montana State University, Bozeman, MT 59717, USA
26 European Gravitational Observatory (EGO), I-56021 Cascina (PI), Italy
27 Syracuse University, Syracuse, NY 13244, USA
28 LIGO - Massachusetts Institute of Technology, Cambridge, MA 02139, USA
29 APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Inrf, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
30 Columbia University, New York, NY 10027, USA
31 Stanford University, Stanford, CA 94305, USA
32 IM-PAN 00-956 Warsaw a ; Astronomical Observatory Warsaw University 00-478 Warsaw b ; CAMK-PAN 00-716 Warsaw c , Białystok University 15-424 Białystok d ; NCBJ 05-050 Świętokrzyskie-OWT e ; Institute of Astronomy 65-365 Zielenza Górą f, Poland
33 The University of Texas at Brownsville, Brownsville, TX 78520, USA
34 San Jose State University, San Jose, CA 95192, USA
35 Moscow State University, Moscow, 119992, Russia
36 LAL, Université Paris-Sud, IN2P3/CNRS, F-91898 Orsay a ; ESPCI, CNRS, F-75005 Paris b, France
37 University of Western Australia, Crawley, WA 6009, Australia
38 Université Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, F-06304 Nice c ; Institut de Physique de Rennes, CNRS, Université de Rennes 1, 35042 Rennes d, France
39 Laboratoire des Matériaux Avancés (LMA), IN2P3/CNRS, F-69622 Villeurbanne, Lyon, France
40 Washington State University, Pullman, WA 99164, USA
41 INFN, Sezione di Perugia a ; Università di Perugia b, I-06123 Perugia; Università di Camerino, Dipartimento di Fisica c, I-62032 Camerino, Italy
42 INFN, Sezione di Firenze, I-50019 Sesto Fiorentino d; Università degli Studi di Urbino ‘Carlo Bo’ e, I-61029 Urbino f, Italy
43 University of Oregon, Eugene, OR 97403, USA
44 Laboratoire Kastler Brossel, ENS, CNRS, UPMC, Université Pierre et Marie Curie, 4 Place Jussieu, F-75005 Paris, France
45 University of Maryland, College Park, MD 20742 USA
46 Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
47 University of Massachusetts - Amherst, Amherst, MA 01003, USA
48 Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario, M5S 3H8, Canada
49 Tsinghua University, Beijing 100084 China
50 University of Michigan, Ann Arbor, MI 48109, USA
51 Louisiana State University, Baton Rouge, LA 70803, USA
52 The University of Mississippi, University, MS 38677, USA
53 Charles Sturt University, Wagga Wagga, NSW 2678, Australia
54 Caltech-CaRT, Pasadena, CA 91125, USA
55 INFN, Sezione di Genova; I-16146 Genova, Italy
56 Pusan National University, Busan 609-735, Korea
57 Australian National University, Canberra, ACT 0200, Australia
58 Carleton College, Northfield, MN 55057, USA
59 The University of Melbourne, Parkville, VIC 3010, Australia
60 INFN, Sezione di Roma Tor Vergata a ; Università di Roma Tor Vergata, i-00133 Roma; Università dell’Aquila, I-67100 L’Aquila a, Italy
61 University of Salerno, I-84084 Fisciano (Salerno), Italy
62 Instituto Nacional de Pesquisas Espaciais, 12227-010 - São José dos Campos, SP, Brazil
63 The University of Sheffield, Sheffield S10 2TN, United Kingdom
64 Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós ut 29-33, Hungary
65 Inter-University Centre for Astronomy and Astrophysics, Pune - 411007, India
66 University of Minnesota, Minneapolis, MN 55455, USA
67 INFN, Gruppo Collegato di Trento a and Università di Trento b, I-38050 Povo, Trento, Italy; INFN, Sezione di Padova c and Università di Padova d, I-35131 Padova, Italy
68 California Institute of Technology, Pasadena, CA 91125, USA
69 Northwestern University, Evanston, IL 60208, USA
70 Rochester Institute of Technology, Rochester, NY 14623, USA
71 University of Cambridge, Cambridge, CB2 1TN, United Kingdom
72 University of Szeged, 6720 Szeged, Dóm tér 9, Hungary
73 Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX United Kingdom
74 EMBRY-RIDDLE AERONAUTICAL UNIVERSITY, Prescott, AZ 86301 USA
75 Perimeter Institute for Theoretical Physics, Ontario, N2L 2Y5, Canada
76 American University, Washington, DC 20016, USA
77 University of Durham, Durham, NE 3824, USA
78 University of Southampton, Southampton, SO17 1BJ, United Kingdom
79 Korea Institute of Science and Technology Information, Daejeon 305-806, Korea
80 Hobart and William Smith Colleges, Geneva, NY 14456, USA
81 Institute of Applied Physics, Nizhny Novgorod, 603950, Russia
82 Lund Observatory, Box 43, SE-221 00, Lund, Sweden
83 Hanyang University, Seoul 133-791, Korea
84 Seoul National University, Seoul 151-742, Korea
85 University of Strathclyde, Glasgow, G1 1XQ, United Kingdom
1. INTRODUCTION

Some of the key questions in the pursuit of sources of transient gravitational radiation detectable by LIGO (Abbott et al. 2009) and Virgo (Accadia et al. 2012) relate to their electromagnetic (EM) signatures and our ability to observe them (Abadie et al. 2012a). In several of these sources, like core collapse supernovae and neutron star-neutron star or neutron star-black hole mergers, energetics suggest gravitational waves (GWs) are likely to be accompanied by EM emission across the spectrum and over time scales ranging from seconds to days (Fryer et al. 2002; Piran 2004; Mészáros 2006; Nakar 2007; Corsi & Mészáros 2009). Multi-wavelength EM observations of such events have already set the paradigm for improved constraints on source astrophysics set jointly rather than separately. Prompt outbursts, as well as afterglows in X-ray, optical and radio associated with Gamma-Ray Bursts (GRBs) and supernovae have shed light on the progenitors and the astrophysics of these systems (Kulkarni et al. 1998; Bloom et al. 1999; Matheson et al. 2003; Berger et al. 2005; Gehrels et al. 2005; Soderberg et al. 2005; Berger 2009; Zhang & MacFadyen 2009; Soderberg et al. 2010; Berger 2011). The benefit of coupling them to GW observations will be tremendous as this will bring the GW observations into astrophysical and cosmological context. Besides increasing detection confidence (Kochanek & Piran 1993), multi-wavelength observations may improve source localization down to the arcsecond level, leading to identification of the host galaxy and measurement of the redshift (Schutz 1986; Sylvestre 2003; Stubbs 2008; Phinney 2009; Stamatakis et al. 2009; Bloom et al. 2009; Metzger et al. 2010; Metzger & Berger 2012). Conversely, the absence of any EM signature for an otherwise confident transient detection with the GW detectors alone will provide constraints on emission mechanisms, progenitors and energetics.

LIGO (Abbott et al. 2009), and Virgo (Accadia et al. 2012) form a network of interferometric detectors aiming to make the first direct observations of GWs. In their 2009-2010 data-taking period this network consisted of three interferometers: LIGO-Hanford in Washington State in the USA, LIGO-Livingston in Louisiana and over time scales ranging from seconds to days, the Swift satellite. In this paper we present the results from the EM follow-up program involving only Swift — results from the sister program involving the follow-up of GW candidates by ground-based optical and radio telescopes will be the subject of a forthcoming publication. The paper is organized as follows. In Section 2 we describe the Swift observatory. We then review in Section 3 the procedure for targeting EM follow-up of GW events, as described in detail in Abadie et al. (2012a). The Swift observations and analysis of data are described in Section 4. In Section 5 we present our formalism for combining results from the joint GW-EM search, including the simulation work we performed. We conclude in Section 6 with a discussion and outlook for this kind of joint search.

2. THE SWIFT OBSERVATORY

The Swift Gamma-Ray Burst Mission (Gehrels et al. 2004), developed and launched under NASA’s Medium Explorer Program, is unique for its broad wavelength sensitivity and rapid response. Three telescopes are co-aligned. The Burst Alert Telescope (BAT) (Barthelmy et al. 2005) is a broad field of view (FOV) coded-aperture instrument with a CdZnTe detector plane, designed to search for transient events such as GRBs. Approximately 100 GRBs are discovered by BAT each year. In response to a BAT trigger, the spacecraft performs an autonomous slew to point the two narrow field of view instruments. The Ultra-Violet and Optical Telescope (UVOT) (Roming et al. 2005) performs follow-up observations of GRBs in the 170 to 600 nm band, with a 0.28°×0.28° field of view. The X-Ray Telescope (XRT) (Burrows et al. 2005) has an effective area peaking at 110 cm² (at 1.5 keV), a 0.4°×0.4° FOV, and an energy bandpass of 0.3–10 keV. While spacecraft slewing can be initiated autonomously, achieving repointing within approximately 2 minutes, the process can also be initiated from the ground. The Swift Mission Operations Center (MOC), located near the University Park campus of the Pennsylvania State University, receives over 1000 requests for ToOs from the astronomical community each year. Response time to a ToO depends on scientific priority and urgency. Due to communication to ground-based telescopes and Swift in order to be followed up. In an earlier publication (Abadie et al. 2012a) we presented the details of the implementation and testing of this low latency search and its coupling to EM astronomy. In this paper we report on the analysis of the Swift data we collected as part of this program.

With the start of the 2009-2010 LIGO-Virgo runs we established a Target-of-Opportunity (ToO) program with Swift in order to search for possible afterglow in X-ray, ultraviolet and optical wavelengths of a small number of GW transient candidates. The sensitivity of the GW detectors at the time made the chance of a detection small, but non-negligible. For the case of binary sources with at least one neutron star in the system, the rate of detectable merger events was predicted to be in the range of 2.7×10⁻¹⁰ to 0.3 events per year (Abadie et al. 2010a). This ToO program was exercised twice; neither time led to detection of an EM counterpart to a GW transient. Nonetheless, the program addressed implementation questions and established the first joint observation and coordinated data analysis by the LIGO-Virgo network and Swift satellite.
Swift follow-up observations of candidate gravitational-wave transient events

limitations and human-in-the-loop commanding, observation of the highest priority ToOs is typically achieved within 4 hours, although frequently the response time is less than 1 hour. In this way, a ground-based observatory such as LIGO-Virgo can provide the trigger for a transient event, with Swift providing prompt follow-up observations in the X-ray, UV, and optical bands.

3. SELECTION OF GRAVITATIONAL-WAVE TRANSIENTS

The LIGO-Virgo EM follow-up program took place during two observing periods, from 2009 December 17 to 2010 January 8 and from 2010 September 2 to 2010 October 20. The details of the implementation and testing of the end-to-end search on the GW end have been described elsewhere (Abadie et al. 2012a). Here we will summarize the key features and expand on aspects that were specific to the joint program with Swift.

3.1. Event selection

GW candidate events were selected for follow-up based primarily on their Pulse Alarm Rate (FAR), the rate at which an event of equal or greater significance is expected to occur in the absence of a true signal. For this run, in order to trigger a Swift follow-up, we set a nominal threshold on the candidate events’ FAR at no more than one event per 35 days of triple coincident running (i.e., the GW instrument configuration when all three detectors were acquiring sensitive data).

To avoid trying to image unusually poorly localized events, an additional constraint was placed on candidates that 20% or more of the a posteriori (see Section 3.2) weighted probability in the event skymap must be covered by up to five 0.4°×0.4° tiles selected for follow-up as Swift fields. The number of fields picked for the Swift follow-up program reflected a compromise between the need to cover as large an area in the sky as possible and the requirement to be minimally disruptive of Swift’s other science targets. If five fields were targeted by Swift for each LIGO-Virgo candidate, the correct location of GW events of high significance could be imaged with a probability greater than 50% (Abadie et al. 2012a). Additionally, manual and automated checks were performed on data quality in each interferometer before sending any alerts, eliminating events which had an obvious problem associated with them. For events which passed all data selection criteria, observation requests were sent to Swift through web-based ToO submission.

During the course of the EM follow-up program, GW candidate transient events were selected by transient-finding algorithms for un-modeled bursts as well as compact binary star coalescences (Abadie et al. 2012a). Two such events met all criteria and were submitted for follow-up with Swift. These were identified by one of the generic transient-finding algorithms, called coherent WaveBurst (Klimenko et al. 2011). This algorithm uses wavelet decomposition to search for GWs without relying on specific waveform models. The “January” event occurred at 8:46 UTC on 2010 January 7. This was an event close to the end of the first LIGO-Virgo observation period, during which we lowered the nominal thresholds to 1 event per day for the FAR and 10% for the weighted probability of the event skymap. The thresholds were adjusted as the first LIGO-Virgo observation period was approaching an end in order to exercise the follow-up process at least once. The “September” event, which occurred at 6:42 UTC on 2010 September 16, passed all nominal criteria for follow-ups. This event was later (in March 2011) revealed to be a “blind injection” artificially inserted into the interferometers as a test of our detection procedures (Abadie et al. 2011b,c, 2012b). While both of these events were ultimately tests of the system rather than plausible candidates, they demonstrate the viability of performing rapid follow-ups of potential GW signals using Swift.

3.2. Position errors and tiling

The typical uncertainty in sky location of a GW signal is large (typically tens of square degrees) relative to the FOV of Swift’s XRT and UVOT instruments. This may be in part addressed by imposing the requirement for the reconstructed sky location to overlap with nearby galaxies. We have used information from the Gravitational Wave Galaxy Catalog (GWGC) (White et al. 2011) in order to fold into the tiling algorithm location, extent and blue luminosity of known galaxies within a distance less than 50 Mpc, since the GW interferometer network would not be likely to detect neutron star binary coalescences beyond this distance. In this way, locations with a known galaxy from this catalog were given greater weight than those without galaxies present.

For the earlier “winter” run in which the January event occurred, skymap tiles with galaxies or globular clusters at a distance less than 50 Mpc had their estimated probability increased by a factor of 3, whereas for the later “autumn” run the estimated relative probability of each tile in the skymap was calculated according to:

$$P \propto \sum_i \frac{M_i L}{D_i}$$

where M_i is the blue light luminosity of a galaxy (a proxy for star formation rate (Phippen 1991; Kopparapu et al. 2008; Abadie et al. 2010a)), L is the likelihood from only the GW skymap and D_i is the distance of the galaxy from Earth (Nutall & Sutton 2010). The index i sums over each galaxy associated with the skymap tile. Only \sim8% of tiles in a typical skymap were associated with one or more galaxies, while P was set to zero for tiles with no associated galaxy (Abadie et al. 2012a). After this summation was performed, the resulting likelihoods were renormalized to a probability of unity over the entire skymap. In this way we constructed the a posteriori probability skymaps that we used for prioritizing the Swift observations.

For both events selected for follow-up, several tiles were chosen and passed on for imaging as Swift fields according to the procedures outlined above. The probability skymaps produced by coherent WaveBurst without galaxy weighting and containing the top 1000 tiles are shown in Figure 1. The maps show large spreads in probability on the sky, the first due to their relatively low significance, the second due to worse sensitivity in Virgo relative to the LIGO interferometers. Simulations show that, despite the relatively small size of Swift fields with respect to the extent of our probability skymaps, sources originating in or close to nearby galaxies can be correctly

1 https://www.swift.psu.edu/secure/too/too_request.htm
localized with reasonable success rates (see Abadie et al. (2012a) and discussion in Section 5). The regions containing the fields imaged by Swift are shown with an asterisk on each skymap, with precise coordinates of each field given in Tables 1–2.

4. OBSERVATIONS WITH SWIFT

The ToO requests were submitted manually via the web within 2 hours from the collection of GW data. The initial two requested pointings for each event were submitted as “high priority” (but not the highest); this reflected a compromise between capturing the early light and being minimally disruptive to Swift operations. Swift observations with the XRT and UVOT instruments of the specified targets were performed in the following ~12 hours. Rapid follow-up could significantly increase the likelihood of a detection, as several types of potential GW/EM sources (e.g., short GRBs) have afterglows that fade below detectability on a timescale of ~hours. The highest probability region of the January event skymap was observed by Swift in 5 overlapping fields (Figure 2). Each of these were observed twice that month. For the September event two disjoint Swift fields were observed (Figure 2). Note that the fields shown are explicitly for the XRT analysis, whereas the UVOT has a slightly smaller FOV. Each September event field was observed on two days, one in September 2010 and the other in December 2010. Details of the observations are given in Tables 1–2.

4.1. X-ray results

We analyzed the Swift-XRT data with custom scripts which use the software described in Evans et al. (2007) and Evans et al. (2009). For each field we combined the observations and produced a single image and exposure map. We then used the source detection and point spread function (PSF) fitting code described in Goad et al. (2007) and Evans et al. (2009) to identify and localize sources in the field. This method uses a sliding-cell detection algorithm, with a fixed cell size of 21×21 pixels (49.6′×49.6′, which encloses 93% of the PSF). An initial run with a detection significance threshold of 3 (i.e. S/σS is at least 3, where S is the estimated number of net source counts in the cell, and σS is the uncertainty in this value, determined using the background estimated from an annular box of size 51 pixels) revealed no sources in any of the observations, however for faint sources this box size is sub-optimal. We performed a second source search with a reduced detection threshold of 1.5σ. We measured the mean background level in each field and, using a circular source region of radius 10 pixels centered on the position of each of these “reduced-threshold” detections, we applied the Bayesian test of Kraft et al. (1991), only accepting sources which this test determined to be detected with at least 99.7% confidence (i.e. 3σ detections). While this method makes us more sensitive to faint sources, it also increases likelihood of getting false positives due to background inhomogeneities, thus these detections should be treated with caution. A detection system optimized for faint sources is under development. The positions of the reduced-threshold detections are given in Tables 3–4.

Each of these reduced-threshold detections had very few photons, therefore it was not useful to perform a detailed spectral analysis. We determined the mean count-rate of each detection using the Bayesian method of Kraft et al. (1991) and then applied corrections for PSF losses and instrumental effects, following the processes described by Evans et al. (2007) and Evans et al. (2009). For each field we combined the observations and produced a single image and exposure map. We then used the source detection and point spread function (PSF) fitting code described in Goad et al. (2007) and Evans et al. (2009). For each field we combined the observations and produced a single image and exposure map. We then used the source detection and point spread function (PSF) fitting code described in Goad et al. (2007) and Evans et al. (2009) to identify and localize sources in the field. This method uses a sliding-cell detection algorithm, with a fixed cell size of 21×21 pixels (49.6′×49.6′, which encloses 93% of the PSF). An initial run with a detection significance threshold of 3 (i.e. S/σS is at least 3, where S is the estimated number of net source counts in the cell, and σS is the uncertainty in this value, determined using the background estimated from an annular box of size 51 pixels) revealed no sources in any of the observations, however for faint sources this box size is sub-optimal. We performed a second source search with a reduced detection threshold of 1.5σ. We measured the mean background level in each field and, using a circular source region of radius 10 pixels centered on the position of each of these “reduced-threshold” detections, we applied the Bayesian test of Kraft et al. (1991), only accepting sources which this test determined to be detected with at least 99.7% confidence (i.e. 3σ detections). While this method makes us more sensitive to faint sources, it also increases likelihood of getting false positives due to background inhomogeneities, thus these detections should be treated with caution. A detection system optimized for faint sources is under development. The positions of the reduced-threshold detections are given in Tables 3–4.

Each of these reduced-threshold detections had very few photons, therefore it was not useful to perform a detailed spectral analysis. We determined the mean count-rate of each detection using the Bayesian method of Kraft et al. (1991) and then applied corrections for PSF losses and instrumental effects, following the processes described by Evans et al. (2007) and Evans et al. (2009). We used PIMMS2 to determine a count rate-to-flux conversion factor, assuming an absorbed power-law spectrum with a photon index of 1.7. For the January event the assumed absorbing column was 4×1020 cm−2, giving a 0.3–10 keV conversion factor of 4.2×10−11 erg cm−2 ct−1; for the September event the absorbing column was 3×1021 cm−2, giving a 0.3–10 keV conversion factor of 5.1×10−11 erg cm−2 ct−1. A change of 0.2 in the assumed index of the power-law spectrum would result in a ~10% change in these conversion factors. The absorbing columns were taken as the Galactic values in the direction of the event, determined from Kalberla et al. (2005) assuming the abundances of Anders & Grevesse (1989).

Given the sky area covered by the Swift observations (0.126 square degrees per XRT field after instrumental corrections are applied) we expect to find a number of serendipitous sources in the XRT data. To quantify the

2 http://heasarc.nasa.gov/Tools/w3pimms.html
Swift follow-up observations of candidate gravitational-wave transient events

Fig. 2.— Swift-XRT image of the vicinity of the January event (top) and September event (bottom). The large circles show the fields of view of the various pointings. The grayscale denotes relative length of exposure at each location with darker colors indicating longer ones. The horizontal axis denotes right ascension (RA) in hours, minutes and seconds and the vertical axis denotes declination (dec) in degrees.

likelihood of serendipitous source detection, we used the 2XMMi-DR3 catalogue (Watson et al. 2009), which is substantially dominated by serendipitous X-ray sources found by the XMM-Newton observatory (Jansen et al. 2001).

We selected from this catalogue all unique good sources (i.e. with a quality flag of 0; for the flag definition see Watson et al. (2009)). For consistency with 2XMMi-DR3 we convert the 0.3–10 keV XRT count-rates into 0.2–12 keV fluxes, using an absorbed power-law spectrum with a column of $N_H = 3 \times 10^{20}$ cm$^{-2}$ and a power-law photon index $\Gamma = 1.7$, as used for 2XMM3. For each XRT source we then counted the number of 2XMMi-DR3 sources with values of the 0.2–12 keV flux—as measured with the EPIC MOS-1 camera (Turner et al. 2001) onboard XMM-Newton—at least as bright as the source in question. This was then scaled by the ratio of the Swift-XRT instantaneous field of view to the 2XMMi-DR3 unique sky coverage area (504 square degrees). This yielded, for each Swift source, the number of serendipitous sources (N_s) of at least that brightness expected in a single Swift field of view. These values, along with the count rates, are given in Tables 3–4. For the January event we expected a total of 7.5 serendipitous sources, compared to our 8 detections; for the September event we expected 17 serendipitous sources, and had 12 detections. The numbers of serendipitous sources expected will not be a strong function of Galactic latitude at these latitudes and flux levels; Galactic source sky densities are comparable to extragalactic values at a flux of around 5×10^{-14} erg cm$^{-2}$ s$^{-1}$ only at much lower latitudes, see e.g. Motch et al. (2010).

In preparing for the event collection and Swift follow-up, we constructed a utility catalog that would allow us to look up the X-ray history of each field selected for observation in order to help determine if any of the observed sources coincide with known steady-state or variable sources. This X-ray source catalog, which we call XGWC4, combines public data from the HEASARC Master X-ray Catalog 5 and the GWGC. Upon examination of XGWC/HEASARC for known X-ray sources within the observed fields we found two X-ray sources (one of which was observed twice by Swift) in the catalog which were within the fields for the January event. Both were of unknown type. These catalog sources are likely to be associated with the reduced-threshold sources #3 and #4 reported in Table 3. The fields that were observed for the September event contained only one XGWC/HEASARC source of unknown type. This is likely to be associated with the reduced-threshold source #8 reported in Table 4.

We also performed a variability test on the observed sources, since an EM counterpart to the LIGO-Virgo event may be expected to be fading. To do this we produced a light curve of each source, creating one bin per Swift observation ID6, and determining the count-rate using the Bayesian method (Kraft et al. 1991). The significance of any variability was then found simply by dividing the difference in the two bins by the errors in the two bins, added in quadrature. This is given in Tables 3–4: two sources show moderate (between 2 and 2.5σ) evidence for variability (January Source #1 and September Source #4).

In addition to the observations reported above, a further follow-up observation was performed for the January trigger on 2010 Jan 30. This observation, obs ID 00031592001, contained 5.4 ks of data, centered at RA=88.73$^\circ$, dec=-40.96$^\circ$, i.e. overlapping heavily with field 00031577. Including the data from this field causes Sources #1 and #4 to be registered as above-threshold _.xmmcat.html#TableECFs

4 http://aquarius.elte.hu/XGWC/index.html

5 http://heasarc.gsfc.nasa.gov/W3Browse/all/xray.html

6 For the September event we excluded the second observation of each source, since this was very short.
detections. For Source #4, the count-rate of the final observation was almost identical to the first; inclusion of this result changed the variability significance from 0.75 to 0.04σ. For Source #1, the addition of these data alters the variability only slightly, from 2.05 to 1.98σ.

4.2. Optical and UV results

The LIGO-Virgo target fields were observed by the Swift UVOT with the clear white filter (160 – 800 nm) or, if ground analysis indicated that the field contained a star too bright for observation in white, the broadband u filter (centered at 346.5 nm with full width at half maximum of 78.5 nm) or narrow NUV uvm2 filter (centered at 224.6 nm with full width at half maximum of 49.8 nm).

We first attempted to identify any UVOT counterparts to the X-ray reduced-threshold sources identified in the XRT images, photometering any source within 5′ of the XRT position using the standard UVOTSOURCE code and calibrations from Poole et al. (2008) and Breeveld et al. (2011). The results are listed in Tables 5–6. For the January event, XRT reduced-threshold detection 7 fell off the smaller UVOT field and was not measured. UVOT counterpart sources to XRT reduced-threshold detections 1, 2, 3 and 4 were found in at least one epoch. However, they had corresponding sources in the Digital Sky Survey (DSS) and showed no photometric variation beyond the 1-2σ level. No counterparts to XRT reduced-threshold detections 5, 6 and 8 were found in UVOT.

For the September event, XRT reduced-threshold detections 1, 7 and 8 fell outside of the UVOT field. No counterparts to XRT reduced-threshold detections 2, 4, 11 and 12 were found by UVOT. Reduced-threshold detections 3 and 10 were also found by UVOT and correspond to DSS sources. XRT reduced-threshold detections 5, 6 and 9 correspond to very marginal detections in a crowded field and are either very faint objects or spurious detections. The apparent dimming of the UVOT counterpart to source 5 is spurious as this source was on the edge of one UVOT image and only a partial flux could be measured. In short, no XRT reduced-threshold detection corresponds to either an optical transient or a variable source for either the January or September event.

We next performed a blind search for variable targets within the field. In this instance, we photometered the entire field using the DAOPHOT (Stetson 1987) PSF photometry program. We photometered all data using a quadratically variable PSF and found photometry and image subtraction to be excellent, provided the PSF was based on stars not near the coincidence-loss limit of the data. Raw photometry was corrected for coincidence loss, exposure time and large scale sensitivity. The number of detections in each field ranged from 250 to 2800 depending on the Galactic latitude of the field and the exposure time. Of the nearly 6800 sources that were detected in the UVOT data, approximately 5200 are well-measured point-like sources that are not near the coincidence-loss limit off the data. Of these, 11 are not near chip edges or bright stars but show very significant variability (> 7σ) between the two epochs. Such significant variability is likely to reflect real phenomena, such as active galaxies or variable stars, which are expected to be detected in any deep field. However, none of these variable sources corresponded to any X-ray detections and none show variability beyond a few 0.1 magnitudes, which would be consistent with a tentative classification as normal variable stars or active galaxies. Further monitoring would be needed to determine their nature.

4.3. Summary of EM findings

The XRT analysis produced 20 reduced-threshold detections and the UVOT analysis identified nearly 6800 sources in the follow-ups of the two events. However, all observations in X-ray, UV and optical bands were consistent with expectations for serendipitous sources and no single source displayed significant variability in the XRT or UVOT analyses.

5. Combined GW-EM results

Information from the EM observations associated with a GW candidate event will have to be combined with GW data in order to establish key quantities associated with a combined GW-EM search for transients, like event significance or astrophysical reach. In this section we present a formalism for combining results from such joint observations. For the purpose of its validation we performed simulations using possible models of GW and EM signals. In the process we verified the overall search procedure and estimated the increase in sensitivity of the search which resulted from the Swift follow-up observations. Although this is presented within the context of the LIGO-Virgo-Swift search, it can be straightforwardly extended to other joint searches as well.

In the way the search was conducted, a typical joint candidate event is characterized by the strength of the GW signal expressed in terms of the coherent network amplitude η which is the detection statistic itself for coherent WaveBurst. This quantity is generally proportional to the signal-to-noise ratio and is described in detail in Klimenko et al. (2011) and in Abadie et al. (2012b). Joint candidate events are also characterized by the measured X-ray flux, S, and the sky location of the X-ray source, Ω = [RA, dec]. In addition to these, a sky map, i.e. the probability distribution for the location of a potential GW source, pm(Ω), is produced and used to select fields for imaging. We define the joint detection statistic for an event as the logarithm of the joint likelihood ratio, sometimes also referred to as the Bayes factor, given by

\[\Lambda_{\text{joint}}(\eta, S, \Omega) = \Lambda_{\text{GW}}(\eta)\Lambda_{\text{EM}}(S)\Lambda_{\text{cor}}(\Omega). \]

(2)

In the above equation \(\Lambda_{\text{GW}} = p(\eta | \text{signal})/p(\eta | \text{noise}) \) is the likelihood ratio for a GW candidate, measuring its significance. \(\Lambda_{\text{EM}}(S) = p^{-1}_{\Omega}(S) \) is the inverse of the probability density of observing an accidental, serendipitous X-ray source which is not correlated with the GW signal. The remaining term \(\Lambda_{\text{cor}}(\Omega) = p_{\Omega}(\Omega) \) is the probability for a GW source to be in the location of the X-ray source, which measures positional correlation between GW and EM signals. Detection statistics based on the likelihood ratio or the Bayes factor construction have been previously suggested and used in the context of searches for GW bursts (Clark et al. 2007; Cannon 2008; Abadie et al. 2011d) and GWS from compact binary coalescence (Abadie et al. 2010b; Biswas et al. 2012). In deriving Equation (2) (see Appendix A for details) we assumed that the dominant background in the EM sector is serendipitous X-ray sources that happen to be
within the observed fields by chance. We neglected contributions to this from possible spurious sources - due to, e.g., instrumental artifacts - in the XRT analysis. In order to check if this assumption is justified we estimated from the 2XMMi-DR3 catalogue (Watson et al. 2009) that one expects to find at least one serendipitous source with flux equal or greater than 5.4 ×10^{-13} erg cm^{-2} s^{-1} within five Swift fields. Visual inspection of the XRT data would identify artifacts at or above this flux level, and they would be excluded from the analysis. No such artifacts were found in the fields analyzed in this paper. We also assumed that inhomogeneities in the distribution of serendipitous sources over the sky are small. As already mentioned earlier, for every LIGO-Virgo candidate event Swift was nominally going to observe five 0.4°×0.4° fields. The way the end-to-end search pipeline was constructed, only the most probable tiles according to the sky-map p_n(Ω) were observed as Swift fields. This resulted in a natural selection bias. As a result, the position correlation term, Λ_{corr}(Ω), had a negligible effect in separation of real events from background events. After verifying this through simulations we drop it from the right hand side of Equation (2), and the final expression for the detection statistic for the joint LIGO-Virgo and

TABLE 1

Details of the Swift-XRT follow-up observations of the January event.

<table>
<thead>
<tr>
<th>Swift Observation ID</th>
<th>Date Start (UT)</th>
<th>Date End (UT)</th>
<th>Exposure (ks)</th>
<th>Pointing Direction J2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>00031575001</td>
<td>2010 Jan 07 at 13:04</td>
<td>2011 Jan 07 at 14:29</td>
<td>1.5</td>
<td>89.07°, -40.96°</td>
</tr>
<tr>
<td>00031575002</td>
<td>2010 Jan 11 at 19:11</td>
<td>2010 Jan 11 at 19:38</td>
<td>1.6</td>
<td>89.00°, -40.92°</td>
</tr>
<tr>
<td>00031576001</td>
<td>2010 Jan 07 at 14:33</td>
<td>2010 Jan 07 at 15:55</td>
<td>1.7</td>
<td>89.14°, -40.80°</td>
</tr>
<tr>
<td>00031576002</td>
<td>2010 Jan 11 at 15:59</td>
<td>2010 Jan 11 at 16:18</td>
<td>1.1</td>
<td>89.13°, -40.77°</td>
</tr>
<tr>
<td>00031577001</td>
<td>2010 Jan 07 at 15:57</td>
<td>2010 Jan 07 at 17:20</td>
<td>1.8</td>
<td>88.60°, -40.81°</td>
</tr>
<tr>
<td>00031577002</td>
<td>2010 Jan 11 at 17:35</td>
<td>2010 Jan 11 at 18:02</td>
<td>1.6</td>
<td>88.60°, -40.76°</td>
</tr>
</tbody>
</table>

TABLE 2

Details of the Swift-XRT follow-up observations of the September event.

<table>
<thead>
<tr>
<th>Swift Observation ID</th>
<th>Date Start (UT)</th>
<th>Date End (UT)</th>
<th>Exposure (ks)</th>
<th>Pointing Direction J2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>00031825001</td>
<td>2010 Sep 16 at 18:10</td>
<td>2010 Sep 16 at 18:35</td>
<td>1.5</td>
<td>110.98°, -27.54°</td>
</tr>
<tr>
<td>00031825002</td>
<td>2010 Dec 30 at 03:17</td>
<td>2010 Dec 30 at 03:19</td>
<td>0.09</td>
<td>110.98°, -27.54°</td>
</tr>
<tr>
<td>00031825003</td>
<td>2010 Dec 30 at 00:06</td>
<td>2010 Dec 30 at 03:34</td>
<td>2.3</td>
<td>110.98°, -27.53°</td>
</tr>
<tr>
<td>00031826001</td>
<td>2010 Sep 16 at 19:36</td>
<td>2010 Sep 16 at 20:09</td>
<td>2.0</td>
<td>109.86°, -27.57°</td>
</tr>
<tr>
<td>00031826002</td>
<td>2010 Dec 29 at 03:37</td>
<td>2010 Dec 29 at 04:50</td>
<td>0.14</td>
<td>109.85°, -27.54°</td>
</tr>
<tr>
<td>00031826003</td>
<td>2010 Dec 29 at 03:38</td>
<td>2010 Dec 29 at 05:09</td>
<td>1.9</td>
<td>109.86°, -27.58°</td>
</tr>
</tbody>
</table>

TABLE 3

The reduced-threshold detections in the X-ray data for the January event.

<table>
<thead>
<tr>
<th>Source #</th>
<th>Right ascension (RA) (J2000)</th>
<th>Declination (dec) (J2000)</th>
<th>Position Error (") 90% conf.</th>
<th>Count Rate (0.3-10 keV, ks^{-1})</th>
<th>N_9 \text{ } ^{1} \sigma</th>
<th>Variability \text{ } ^{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>05h 55m 1.00s</td>
<td>-40°58′ 00.8″</td>
<td>4.5</td>
<td>5.9^{+1.7}_{-1.2}</td>
<td>0.9</td>
<td>2.05</td>
</tr>
<tr>
<td>2</td>
<td>05h 57m 4.80s</td>
<td>-40°54′ 45.4″</td>
<td>4.3</td>
<td>5.9^{+2.3}_{-1.2}</td>
<td>0.9</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>05h 54m 12.72s</td>
<td>-40°44′ 05.8″</td>
<td>4.3</td>
<td>4.6^{+1.5}_{-1.2}</td>
<td>1.3</td>
<td>0.45</td>
</tr>
<tr>
<td>4</td>
<td>05h 54m 59.29s</td>
<td>-40°54′ 19.6″</td>
<td>4.5</td>
<td>3.2^{+2.1}_{-1.9}</td>
<td>2.4</td>
<td>0.75</td>
</tr>
<tr>
<td>5</td>
<td>05h 51m 57.66s</td>
<td>-40°46′ 10.9″</td>
<td>5.6</td>
<td>2.8^{+1.3}_{-1.1}</td>
<td>2.9</td>
<td>1.10</td>
</tr>
<tr>
<td>6</td>
<td>05h 51m 41.12s</td>
<td>-40°44′ 46.4″</td>
<td>5.5</td>
<td>1.4^{+0.7}_{-0.6}</td>
<td>7.5</td>
<td>0.74</td>
</tr>
<tr>
<td>7</td>
<td>05h 52m 6.29s</td>
<td>-40°59′ 14.3″</td>
<td>6.5</td>
<td>2.3^{+1.2}_{-1.0}</td>
<td>3.9</td>
<td>0.91</td>
</tr>
<tr>
<td>8</td>
<td>05h 52m 55.88s</td>
<td>-40°46′ 14.9″</td>
<td>5.2</td>
<td>2.9^{+1.7}_{-1.2}</td>
<td>2.8</td>
<td>2.00</td>
</tr>
</tbody>
</table>

1N_9 is the number of 2XMMi-DR3 sources which are at least as bright as the Swift source, which are expected in a single Swift field. See text for details.

2The significance of the difference in count-rate between the difference epoch observations.
TABLE 4
THE REDUCED-THRESHOLD DETECTIONS IN THE X-RAY DATA FOR THE SEPTEMBER EVENT.

<table>
<thead>
<tr>
<th>Source #</th>
<th>Right ascension (RA) (J2000)</th>
<th>Declination (dec) (J2000)</th>
<th>Position Error (90% conf.)</th>
<th>Count Rate (0.3–10 keV, ks⁻¹)</th>
<th>Nₙ</th>
<th>Variability significance (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>07h 23m 29.9s</td>
<td>-27°26’ 10.1”</td>
<td>4.4</td>
<td>2.8⁺⁻⁰.⁹</td>
<td>2.9</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>07h 23m 23.4s</td>
<td>-27°33’ 09.5”</td>
<td>4.4</td>
<td>2.3⁺⁻¹.¹</td>
<td>3.9</td>
<td>1.09</td>
</tr>
<tr>
<td>3</td>
<td>07h 23m 34.4s</td>
<td>-27°23’ 32.4”</td>
<td>5.4</td>
<td>2.4⁺⁻¹.¹</td>
<td>3.7</td>
<td>1.47</td>
</tr>
<tr>
<td>4</td>
<td>07h 24m 34.9s</td>
<td>-27°31’ 31.1”</td>
<td>6.1</td>
<td>1.8⁺⁻¹.²</td>
<td>5.5</td>
<td>1.01</td>
</tr>
<tr>
<td>5</td>
<td>07h 23m 53.5s</td>
<td>-27°23’ 06.5”</td>
<td>4.4</td>
<td>0.6⁺⁻⁰.³</td>
<td>10</td>
<td>1.30</td>
</tr>
<tr>
<td>6</td>
<td>07h 24m 27.8s</td>
<td>-27°35’ 40.8”</td>
<td>6.5</td>
<td>2.3⁺⁻¹.¹</td>
<td>3.9</td>
<td>2.48</td>
</tr>
<tr>
<td>7</td>
<td>07h 25m 54.1s</td>
<td>-27°42’ 29.5”</td>
<td>6.4</td>
<td>2.2⁺⁻¹.⁰</td>
<td>4.2</td>
<td>1.20</td>
</tr>
<tr>
<td>8</td>
<td>07h 19m 30.2s</td>
<td>-27°45’ 42.5”</td>
<td>4.1</td>
<td>8.8⁺⁻³.⁴</td>
<td>0.5</td>
<td>0.44</td>
</tr>
<tr>
<td>9</td>
<td>07h 19m 37.1s</td>
<td>-27°33’ 12.0”</td>
<td>5.2</td>
<td>2.4⁺⁻¹.¹</td>
<td>3.7</td>
<td>0.60</td>
</tr>
<tr>
<td>10</td>
<td>07h 19m 25.7s</td>
<td>-27°31’ 37.0”</td>
<td>5.8</td>
<td>0.9⁺⁻⁰.⁶</td>
<td>12</td>
<td>0.36</td>
</tr>
<tr>
<td>11</td>
<td>07h 19m 18.0s</td>
<td>-27°25’ 15.4”</td>
<td>5.0</td>
<td>1.7⁺⁻⁰.⁹</td>
<td>5.9</td>
<td>0.97</td>
</tr>
<tr>
<td>12</td>
<td>07h 19m 41.9s</td>
<td>-27°39’ 58.1”</td>
<td>5.0</td>
<td>1.6⁺⁻¹.²</td>
<td>6.4</td>
<td>1.02</td>
</tr>
</tbody>
</table>

TABLE 5
UVOT PHOTOMETRY FOR XRT DETECTIONS IN JANUARY EVENT

<table>
<thead>
<tr>
<th>XRT Source No.</th>
<th>0030157001</th>
<th>0030157002</th>
<th>0030157002</th>
<th>0030157001</th>
<th>0030157002</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>white</td>
<td>white</td>
<td>white</td>
<td>u</td>
<td>u</td>
</tr>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>20.09±0.06</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
<td>17.70±0.04</td>
<td>17.78±0.04</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>19.50±0.06</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>>21.53</td>
<td>>21.33</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>>21.55</td>
<td>>21.27</td>
</tr>
<tr>
<td>7</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>>21.52</td>
<td>>21.40</td>
</tr>
</tbody>
</table>

TABLE 6
UVOT PHOTOMETRY FOR XRT DETECTIONS IN SEPTEMBER EVENT

<table>
<thead>
<tr>
<th>XRT Source No.</th>
<th>00301582001</th>
<th>00301582003</th>
<th>00301582001</th>
<th>00301582003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u</td>
<td>u</td>
<td>white</td>
<td>white</td>
</tr>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>>20.73</td>
<td>>21.21</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>14.11±0.02</td>
<td>14.11±0.02</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>>20.70</td>
<td>>21.22</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>19.76±0.17</td>
<td>20.67±0.23</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>>20.79</td>
<td>21.10±0.33</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>...</td>
<td>...</td>
<td>20.75±0.36</td>
<td>20.32±0.12</td>
</tr>
<tr>
<td>10</td>
<td>...</td>
<td>18.76±0.07</td>
<td>18.90±0.04</td>
<td>...</td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>>20.79</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>12</td>
<td>...</td>
<td>>20.84</td>
<td>>21.65</td>
<td>...</td>
</tr>
</tbody>
</table>

Note. — Column headings designate UVOT fields and filters used and table entries are observed magnitudes. No XRT sources fell within the UVOT field of view for observations 00031575001, 00031575002, 00031576002, 00031579001 or 00031579002.

Swift search becomes

\[\rho_{\text{joint}}(\eta, S) = \rho_{\text{GW}}(\eta) + \rho_{\text{EM}}(S) \]

(3)

where \(\rho_{\text{GW}}(\eta) \) and \(\rho_{\text{EM}}(S) \) are logarithms of \(\Lambda_{\text{GW}}(\eta) \) and \(\Lambda_{\text{EM}}(S) \) respectively.

We simulated the search by processing a population of model GW signals which were paired with plausible X-ray fluxes. The set of GW injections was the same with the one used previously (Abadie et al. 2012a) for methodological studies of joint GW-EM observations. These injections sampled the known galaxies within 50 Mpc according to the GWGC and were weighted to reflect each galaxy’s blue light luminosity. Their intrinsic strength (at the source) spanned ad hoc standard candle values over 3 orders of magnitude. For the purpose of this analysis and to approximate a more realistic distribution of events that are relatively close to our detection threshold, we imposed that they fall below detectability, which implies \(\eta \leq 3.5 \), at distances outside the 50 Mpc range. For the low latency search in 2009-2010, 3.5 was the typical threshold value for \(\eta \). Translating this value into strain at the detector and ultimately at the source depends mildly on the waveform morphology and polarization state of the GW burst and rather strongly on the frequency content of it (Abadie et al. 2012b). In order...
to set the scale, at 50% detection efficiency during the 2009-2010 run and for GW bursts with energy content near 150Hz this value of η corresponds to an isotropic energy at the level of $5.6 \times 10^{-2} M_\odot c^2$ emitted in GWs from a hypothetical source at the Virgo cluster (16 Mpc) (Abadie et al. 2012b).

All such simulated events were added to LIGO and Virgo data and analyzed as in the actual search. We used these simulated GW signals to compute the coherent network amplitude, η, and its probability distribution, $p(\eta|\text{signal})$, which is needed for calculation of the joint statistic in Equation (2) and Equation (3). Models for X-ray counterparts were based on GRB afterglows observed by Swift. In order to set the scale of possible X-ray fluxes for counterparts, we considered several short hard GRBs and some bright and dim long GRBs (Zhang et al. 2009). The host galaxies of all selected GRBs had $z < 1$. We sampled the observed X-ray afterglow light curves for the observed GRBs at different time lags ($\sim 10^3$ s, 10^5 s, 10^6 s) relative to the time of arrival of the burst. For a possible X-ray counterpart to GWs from a source at 50 Mpc away this analysis gave us a wide range of flux values, $S_{50\text{Mpc}}$, from 10^{-13} erg s$^{-1}$ cm$^{-2}$ to 10^{-8} erg s$^{-1}$ cm$^{-2}$. In the absence of any other guidance, we performed simulations for each order of magnitude in that range. For a given $S_{50\text{Mpc}}$ every GW signal was paired up with a corresponding X-ray flux, which was scaled up (as it was positioned anywhere within the 50 Mpc range) according to the distance to the source.

Computation of the joint detection statistic, Equation (3), also requires estimates of the background noise in GW detectors and flux distribution of serendipitous X-ray sources. Background noise in GW detectors is dominated by high amplitude instrumental artifacts. It is typically estimated by time-shifting data from one detector with respect to the other. In our simulations we used estimates for background noise from the coherent Wave-Burst search for GW bursts with LIGO and Virgo in their 2010 science run (Abadie et al. 2012b). In the EM sector, on the other hand, serendipitous X-ray sources observed in coincidence with a GW signal are the main source of false alarms. As in assessing the background in the XRT analysis we presented in Section 4.1, we used also here the 2XMMi-DR3 catalogue (Watson et al. 2009) of serendipitous sources for the estimation of the flux distribution for such sources. For both types of backgrounds we fitted analytical models to the data and computed $p(\eta|\text{noise})$ and $p_0^{-1}(S)$ appearing in the definition of the joint likelihood ratio in Equation (2).

For each simulated GW signal complemented by an X-ray counterpart of a given flux, the last step of the analysis involved the calculation of the joint detection statistic ρ_{joint} as given by Equation (3). Using estimates for the GW and X-ray backgrounds, the false alarm probability (FAP) of observing a background event with joint statistic $\rho_{\text{joint}} \geq \rho_{\text{point}}$ in a month long search was computed. This defined the significance of the observed event. Figure 3 shows the efficiency in detecting these simulated GW-EM signals as a function of FAP, P_0, in a joint LIGO-Virgo-Swift search using five or ten Swift fields and for a wide range of X-ray counterpart fluxes. The efficiency is defined as the fraction of simulated signals with FAP, $P_0 \leq P_0$. For comparison, we also plot the efficiency curve for the GW only search which does not use any (Swift) EM follow-up. In the rare-event region below FAP of 10^{-4} (i.e., corresponding to below $\sim 4\sigma$ for the case of Gaussian statistics) one can see how at fixed event significance the efficiency can improve by a significant factor depending on the associated EM flux that is measured. As expected, the gain increases with the brightness of the X-ray counterpart. It reaches a saturation point at which roughly one-third and one-half, respectively, of the signals are detected in the searches with five and ten fields observed by Swift. This is determined by the number of signals for which their true location overlapped with the five (or ten) most significant tiles of the sky-map. Only these signals were observed by Swift. The rest of the signals were “missed” in the follow-up and therefore did not benefit from it. Observing more fields with Swift increases the chances of locating the X-ray counterpart, but at the same time the has the negative effect of increasing chances of accidental detection of serendipitous X-ray sources (background). Figure 3 shows that the net gain is noteworthy if ten instead of five fields were observed by Swift. In general, an X-ray telescope with a wide field of view would be optimal for the purpose of the joint search. We should note though that for such a telescope the position correlation term, $\Lambda_{\text{cor}}(\Omega)$, in the joint likelihood ratio Equation (2) may become important and should be included in the analysis.

6. SUMMARY AND DISCUSSION

During two periods in late 2009 and 2010 the LIGO-Virgo GW interferometric network sent out low latency candidate GW events to partner observatories for rapid follow-ups in various EM bands. Two such events were followed up as ToOs by Swift. One of the events followed up by Swift was ultimately revealed to be a blind
injection artificially inserted into the data as a test of the system (Abadie et al. 2011c) and the other was a reduced threshold test event (Abadie et al. 2011b, 2012b). Prompt analysis of both the XRT and UVOT data obtained from the 7 total fields observed showed results consistent with expectations for serendipitous sources. Given the lack of EM candidates standing out above background, these particular observations do not increase our confidence in the validity of the GW transients as established by the GW detectors alone.

Combining GW and EM astronomy will be pivotal in maximizing the science in the advanced detector era of gravitational interferometers; it may not only increase our confidence in the detection of GWs but also complete our understanding of the astrophysics of the observed systems (Bloom et al. 2009; Phinney 2009; Stamatikos et al. 2009; Metzger & Berger 2012). Our prototype observing program and end-to-end analysis has been the first step in joint X-ray and GW observations. We demonstrated their feasibility and the considerable added value joint observations bring. Improvements to these will continue to be made in the future on both the EM and GW side. The relatively narrow FOV of instruments such as Swift with respect to the limited pointing resolution abilities of GW interferometers makes identifying the position of the source on the sky non-trivial. A possible fourth detector site in India, Japan or elsewhere and continued refinements in source localization algorithms are likely to reduce the sky-position error area. On the EM side, a more highly optimized faint source detection scheme for XRT transients might yield improvement in EM sensitivity. In late 2011 Swift implemented on-board software changes to allow automatic scheduling sequences of partially overlapping XRT FOV exposures in response to ToO observation requests for targets with position uncertainties larger than the FOV—this will assist the follow-up of GW targets. A significant role will also be played by prompt follow-up campaigns in the optical band that may provide rapid sub-degree source localizations. Such localizations may facilitate the subsequent follow-up with narrow FOV instruments including Swift, thus significantly improving the chances of capturing the X-ray signatures of GW sources.

In order to carry out multimessenger astrophysics with GWs, it will be extremely important to have Swift and/or Swift-like satellites capable of rapid pointing, multi-wavelength observations and of as wide a field of view as possible operating concurrently with the advanced GW detector network later in this decade. Maximizing the science from GW astronomy will require sensitive partner instruments all across the EM spectrum. The successful completion of this end-to-end program of EM follow-ups by Swift and other observatories during the most recent science runs of the LIGO-Virgo network provides confidence that such joint observations will be both technically feasible and scientifically valuable endeavors in the future.

The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Economía y Competitividad, the Conselleria d’Economia Hisenda i Innovació of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, The National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. This work was also partially supported through a NASA grant/cooperative agreement number NNX09AL61G to the Massachusetts Institute of Technology. P. Evans and J.P. Osborne acknowledge financial support from the UK Space Agency.

APPENDIX

DERIVATION OF THE JOINT LIKELIHOOD RATIO

In this section we derive from first principles Equation (2) that we used in Section 5 in order to establish the detection statistic of the joint GW-EM search. Using Bayes’ theorem, the probability skymap for a potential GW source, \(p_m(\Omega) \), can be written as

\[
p_m(\Omega | \eta, \text{signal}) = \frac{p(\eta | \Omega, \text{signal})p(\Omega | \text{signal})}{p(\eta | \text{signal})}\]

where \(p(\eta | \Omega, \text{signal}) \) and \(p(\Omega | \text{signal}) \) are the conditional probabilities to measure a GW signal with coherent network amplitude \(\eta \) in the case of a source located at \(\Omega \) and a source with unknown location, respectively; \(p(\Omega | \text{signal}) \) is the prior probability distribution for source location, which in this search is determined by the distribution of galaxies in the GWGC catalog and distance weighting, see Equation (1).

The joint likelihood ratio is defined as

\[
\Lambda_{\text{joint}}(\eta, S, \Omega) = \frac{p(\eta, S, \Omega | \text{signal})}{p(\eta, S, \Omega | \text{noise})} = \int \frac{p(\eta | \Omega', \text{signal})p(S, \Omega | S', \Omega', \text{signal})p(\Omega' | \text{signal})p(S' | \text{signal})d\Omega'}{p(\eta | \text{noise})p_0(S)}\]

(A2)
where $p_0(S)$ is the probability density of observing an accidental, serendipitous X-ray source which is not correlated with the GW signal, and we introduce $p(S, \Omega | S', \Omega', \text{signal})$, the probability distribution of flux, S, and X-ray source location, Ω, as measured by Swift for a source whose true flux at the detector and location are S' and Ω', respectively; $p(S' | \text{signal})$ is the prior probability distribution for the flux of an X-ray counterpart to the GW signal. Integration in the numerator is performed over all possible values of flux and sky locations. Note that, although we assume the strength of the GW signal to be uncorrelated with the flux of the X-ray counterpart, we demand that both types of signals originate from the same sky position, Ω'. This enforces correlation between measured locations of GW and its X-ray counterpart.

Using Equation (A1) we can express the joint likelihood ratio in terms of the skymap, $p_m(\Omega)$, and GW likelihood ratio, $\Lambda_{GW}(\eta) = p(\eta | \text{signal})/p(\eta | \text{noise})$:

$$
\Lambda_{\text{joint}}(\eta, S, \Omega) = \Lambda_{GW}(\eta) \frac{\int p_m(\Omega') p(S, \Omega | S', \Omega', \text{signal}) p(S' | \text{signal}) d\Omega' dS'}{p_0(S)}. \tag{A3}
$$

This expression can be simplified further by postulating $p(S, \Omega | S', \Omega', \text{signal}) = \delta(S-S')\delta(\Omega-\Omega')$ and $p(S' | \text{signal}) = 1$,

$$
\Lambda_{\text{joint}}(\eta, S, \Omega) = \Lambda_{GW}(\eta) \frac{p_m(\Omega)}{p_0(S)}.
\tag{A4}
$$

Defining $\Lambda_{\text{EM}}(S) = p_0^{-1}(S)$ and $\Lambda_{\text{corr}}(\Omega) = p_m(\Omega)$, we arrive at the form for the joint likelihood ratio given in Equation (2). We stress that the particular form of $\Lambda_{\text{EM}}(S)$ and $\Lambda_{\text{corr}}(\Omega)$ is a consequence of the simplifying assumptions about Swift’s ability to measure the flux and location of an X-ray source that are justified in Section 5. In general, these quantities are going to be nontrivial ratios of likelihoods estimating odds of an X-ray candidate source to be a counterpart to GW based on its brightness and location.

REFERENCES

Nakar, E. 2007, Physics Reports, 442, 166

Nuttall, L., Sutton, P. J. 2010, Phys. Rev. D, 82, 102002

Piran, T. 2004, Rev. Mod. Phys., 76, 1143

Stubbs, C. W. 2008, Class. Quantum Grav., 25, 184033

White, D. J., Daw, E. J. & Dhillon, V. S. 2011, Class. Quant. Grav., 28, 085016