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Abstract 
   A new control and data acquisition system architecture 
is being implemented as part of the Advanced Laser 
Interferometer Gravitational-wave Observatory (aLIGO) 
project. This system employs a number of multi-core 
processor-based computers to perform real-time control, 
with connection to PCI Express Input/Output devices via 
fiber optic links. Requirements on the real-time control 
algorithms include servo loop rates of up to 65KHz and 
synchronous, deterministic operation to within a few 
microseconds. To attain this real-time performance, a 
patch has been developed to the Linux operating system 
that allows detachment of a processor core from the Linux 
scheduler for the exclusive use of an assigned real-time 
task. An overview of the real-time software design, which 
takes advantage of this "core locking", and the particulars 
of the Linux patch are described in this paper. 
 

OVERVIEW 
The two Laser Interferometer Gravitational-wave 

Observatory (LIGO observatories are presently 
undergoing an upgrade process to increase the overall 
sensitivity of the instruments. As part of this Advanced 
LIGO (aLIGO) upgrade, the Control and Data acquisition 
System (CDS) is being updated and expanded. On the 
hardware side: 
• VME I/O crates are being replaced with PCI express 

(PCIe) I/O modules and links 
• VME processors are being replaced by standard, rack 

mount server class computers 
On the software side,  
• Commercial real-time operating systems have been 

replaced by Gentoo Linux, with a LIGO custom 
patch to provide hard (plus or minus a few 
microseconds) real-time performance 

• A software package has been developed, Real-time 
Code Generator (RCG), to allow system scientists 
and engineers to develop control algorithms via a 
Graphical User Interface (GUI). 

HARDWARE  
For aLIGO, PCI Express (PCIe) I/O modules replace 

VME modules. These are primarily 16 and 18 bit, multi-
channel, simultaneous sampling, Analog to Digital 
Convertor (ADC) and Digital to Analog Convertor (DAC) 
modules. These modules are housed in a custom I/O 
expansion Chassis (IOC), that contains: 

 
Figure 1: aLIGO IOC and PCIe Fiber Link 

 
• A commercial 17 slot PCIe backplane. 
• Commercial fiber optic PCIe uplink to the 

real-time control computer, that is remotely 
located up to 300m away. 

• LIGO custom designed timing module that 
provides accurate ADC/DAC triggering at 
65536Hz. This unit derives its time from the 
new timing distribution system, which is 
locked to the Global Positioning System (GPS) 
time. 

• Custom timing and interface backplane. 
The IOCs are mounted in electronics racks, adjacent to 

the control electronics that provide the control and data 
acquisition analog signals.  

The control computers are located in a separate 
computer room, interfacing to the IOC via the PCIe fiber 
optic link. These computers are standard, commercial rack 
mount units. Each computer contains one or two, 6 core 
processors and 6GByte, or more, of RAM, depending on 
the application needs. 

To run the LIGO real-time control software, care must 
be taken in the selection of the computer motherboard. 
First, the BIOS must be capable of mapping the required 
number of PCIe modules. Tests have shown that not all 
computers are created equal, in this sense.  

As described later, our software requires that 
applications not be interrupted by the system. However, 
some motherboards have hidden System Management 
Interrupts (SMI), which could not be disabled. This 
introduced as much as 150µsec “glitches” in our code 
execution times. In the selection process, the 
Supermicro® X8DTU motherboards best fit our 
application requirements. 

 ____________________________________________  

* LIGO was constructed by the California Institute of Technology and 
Massachusetts Institute of Technology with funding from the National Science 
Foundation and operates under cooperative agreement PHY-0107417. 
 



SOFTWARE 
Overview 

The real-time software is designed as a complete 
package, from providing a Graphical User Interface (GUI) 
for code development, standard code library to develop 
source code, ‘make’ functions to compile the code, to 
final installation and execution of the software. For real-
time code development and execution, the primary 
components of this package, discussed in further detail in 
this paper, are: 
• The LIGO Real-time Code Generator (RCG). 
• A custom patch to the General Public License (GPL) 

Linux operating system kernel to obtain real-time 
performance. 

The system also provides additional software tools in 
support of the real-time software, listed here briefly, but 
not within the scope of this paper: 
• Data AcQuisition (DAQ) System software. This 

software receives data from all LIGO real-time 
systems, combines and compresses the information 
into a standard file format, and archives the data to 
disk. 

• Network Data Server (NDS): Software that provides 
data from the DAQ system, either real-time feeds or 
from disk/tape archive, to various data clients. 

• Dataviewer: Provides graphical representation of 
data, from NDS, either in real-time or from archived 
data. 

• Diagnostic Test Tools (DTT): Provides a number of 
standard diagnostic functions, including power 
spectrums and swept-sine injection and transfer 
function analysis capabilities. These diagnostics are 
presented via a GUI. 

• Foton: A GUI tool for designing and loading IIR 
filter designs to the real-time software. 

   In addition, the LIGO control system uses the 
Experimental Physics and Industrial Control System 
(EPICS) base software and extensions to provide 
communications between real-time systems and operator 
interfaces. 
 
Real-Time Code Generator (RCG) 

In planning for aLIGO CDS, it was foreseen that 
continuing to write custom C code for control 
applications, even with standard library parts, would 
overburden the relatively small group of software 
developers. Not only did final systems for aLIGO need to 
be supported, but there were also many aLIGO subsystem 
test facilities that would require CDS support very early in 
the process. This led to the development of the RCG. 

The RCG uses MATLAB® Simulink® as the GUI. A 
custom library was added, that includes CDS custom 
software modules and supported Simulink® parts. The 
code developer may then use these parts in an application 
model and interconnect the parts to describe desired 
software execution sequence. Some key elements of this 
library are: 

• I/O: Parts are provided to describe and connect all of 
the I/O modules supported by the RCG. 

• Inter-process communications (IPC): real-time 
communications between applications is provided 
via shared memory (applications running on the 
same computer), reflected memory networks 
(applications running on computers located 4km 
apart), or via a PCIe switched network fabric 
(computers located within 300m of each other). 
Latencies vary from a few nanoseconds, using 
shared memory, a microsecond, using PCIe, or 
15usec via the 4km-long reflected memory runs. 

• IIR Filter Module: This is the key module for 
developing the proper transfer functions for system 
control. Depending on control complexity, a control 
model may contain as many a few hundred of these 
modules. Each of these modules may contain up to 
10 separate filters, along with individual, and group, 
on/off selections and gain and offsets, with ramping, 
at runtime. For diagnostics, and data acquisition, 
each module is provided with three output software 
test point locations and a software test signal 
injection location. The system also supports the 
reloading of filter coefficients during runtime as new 
filters are designed or updated. 

• User defined part to support custom C code. This 
provides a mechanism to allow users to include their 
own custom C code into the control model, if 
desired. 

 
Once the model has been built and saved, a standard 

“Makefile” is provided to produce the executable 
software. Invoking ‘make’ starts the build process: 
• RCG Perl scripts parse the model file, developing a 

parts and code sequence list. 
• Perl script produces the real-time C code source file. 
• Compiler is invoked to produce the real-time 

executable. This includes the user-defined 
application, with standard RCG wrapper software. 
The latter provides for proper code timing and 
sequencing, standard set of diagnostics, connections 
to the data acquisition system and I/O drivers. 

• An EPICS sequencer and database are built to 
support communications to/from the RCG real-time 
process and EPICS channel access. This allows the 
use of various EPICS extension software to provide 
operator interfaces via Ethernet. 

• Various files are produced to describe all of the code 
data channels available to the data acquisition system 
and diagnostic test point information. 

• Produces a basic set of EPICS display screens for use 
as operator interfaces.  

Operating System 
The software is designed to operate at sample rates 

from 2048 samples/sec to 65536 samples/sec. The real-
time execution must be precise and repeatable to within a 
few microseconds. Execution must also occur 



synchronously with the 65536Hz clock provided by the 
LIGO timing system. 

To achieve this performance, the GPL Linux operating 
system, used on LIGO real-time control machines, has 
been modified with a LIGO custom kernel patch. This 
patch was developed to isolate a given CPU core from the 
Linux system for the exclusive use of the real-time control 
program. 

The Linux kernel comes with a built-in mechanism to 
isolate a CPU core from the rest of the Linux system, both 
Linux kernel and user space. This mechanism is called 
CPU hot-plug. This interface provides a function in the 
user space to off-line or shutdown CPU cores. This 
interface does not, however, provide a mechanism to load 
user specified software onto the core when it is set offline, 
as it loads a CPU idle function.   

The LIGO Linux patch is a modification of this 
function. Rather than having the core load an idle function 
as it goes offline, the patch software loads the desired 
control application process as an independent kernel 
object. The primary advantage of this method is that it 
provides total core isolation for the control process. It is 
now independent of the Linux scheduler and no other 
tasks and/or interrupt routines will be assigned to this 
core.   

Now that the core and software have been isolated, a 
code scheduling mechanism must be provided. This is 
accomplished by a special RCG model known as the I/O 
Processor (IOP). The IOP, further described in the 
following section, provides sequencing and timing 
information to the user application real-time processes for 
synchronous operation.  

If the control process needs to be removed, for example 
if new code is to be loaded, it is necessary to unload the 
control process and reinstate the core as a resource to the 
Linux operating system. To do this, the control program is 
issued a stop flag from user space. The code now exists 
and returns. The “cpu idle” routine is called, then the CPU 
core is brought back on line using the standard Linux 
kernel mechanism.  

It should be noted that application of this patch does not 
turn the system into a traditional, full-featured real-time 
operating system. A pre-emptive scheduler is not 
provided, nor are interrupt capabilities implemented. So, 
there are some downsides for general use: 
• User must provide a scheduling mechanism. For 

LIGO applications, the IOP provides for this 
function. 

• Each application requires a separate CPU core to run 
on. This can be wasteful of resources for small 
applications and/or require more cores. 

• Control applications run as a continuous loop, 
performing all calculations on each trigger. While the 
application could be designed to only run some 
calculations on each trigger and/or alternate what 
code gets processed on a given cycle, there is no 
mechanism, such as an interrupt, to asynchronously 
trigger code. 

   On the positive side, this method has a few advantages: 

• No context switching and associated latencies. Once 
locked into a core and cache, the code timing is very 
precise. 

• No chance of priority inversions. 
 

Real-time Execution 
As described above, each real-time application is 

loaded on to its own CPU core at run time. The first CPU 
core (0) is always reserved for Linux operating system use 
and running non-real-time critical applications. 
Applications in this category include: 

• EPICS software to interface the real-time processors 
with the controls Ethernet links. 

• Data Acquisition networking software, which 
transports data from the real-time processes to the 
data acquisition system, via dedicated Ethernet links. 
This data is sent in blocks at 16Hz. 

• Arbitrary Waveform Generator: software used to 
derive test signals for injection into the real-time 
software. 

• Test Point Manager: Conveys diagnostic test point 
selections to the real-time processes. The control 
process is built with a number of test points 
included, each of which may be selected on demand 
to provide data output to the data acquisition system, 
and, in turn, to operator station diagnostic software. 

 
CPU core 1 is reserved for the IOP. The IOP is 

designed to run in a continuous loop at the highest 
supported rate of the system, i.e. 65536Hz.  

The IOP provides a number of key functions for the 
system: 

• Code synchronization. The IOP is triggered to run by 
detection of a new set of data from the IOC ADC 
modules. The ADC modules, in turn, are precisely 
clocked by the LIGO timing system at 65536Hz. 

• Initializes and maps all I/O, including PCIe I/O 
modules. 

• Signals the timing system to start sending clocks to 
the I/O modules coincident with the next GPS 1PPS 
time mark. 

• Acts as the interface between ADC/DAC modules 
and user applications, such that data is clocked in/out 
on precise 65536Hz time marks. 

Remaining CPU cores may now be loaded with user 
control applications. These applications run in a 
continuous loops at rates from 2048Hz to 65536Hz. The 
basic loop process is: 

• Wait for a trigger from the IOP, received via shared 
memory. 

• Get timestamp, in the form of GPS seconds, from the 
IRIG-B receiver module. This module receives its 
time from the LIGO timing system. 

• Input and process ADC and IPC data. 
• Run the user defined control application. 
• Send outgoing DAC settings to the IOP. 



• Send IPC information, via real-time networks or 
shared memory. 

• Output data to be sent to the data acquisition system, 
via shared memory, to the data acquisition network 
software. 

• Communicate data to/from the EPICS interface, via 
shared memory. 

• Perform various housekeeping and self-diagnostic 
tests. 

• Return to Wait State. 
 

STATUS 
The real-time software, and associated hardware, have 

been installed for use at a number of locations over the 
past several years in support of test facilities. Installations 
have ranged from “stand-alone” systems (real-time 
control and DAQ software on a single computer, with one 
or more IOC) for small LIGO test stands, to distributed 
systems for larger LIGO test facilities. Presently, control 
systems are being installed for aLIGO at the Hanford, 
WA and Livingston, LA sites. These systems consist of as 
many as 30 real-time control computers for distributed 
control. 

The latest released version of software, designated 
V2.3, was distributed as the initial code install to both 
LIGO sites in June of this year. The next release is 
planned for November 2011, which incorporates a 
number of enhancements requested by the application 
developer community of scientists and engineers.  
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