
NEW CONTROL AND DATA ACQUISITION SYSTEM IN THE ADVANCED
LIGO PROJECT*

R.Bork, M. Aronsson, D. Barker, J.Batch, J. Heefner, A. Ivanov, R. McCarthy, V. Sandberg, K.
Thorne, LIGO Project, California Institute of Technology, Pasadena, CA, USA.

Abstract
 A new control and data acquisition system architecture
is being implemented as part of the Advanced Laser
Interferometer Gravitational-wave Observatory (aLIGO)
project. This system employs a number of multi-core
processor-based computers to perform real-time control,
with connection to PCI Express Input/Output devices via
fiber optic links. Requirements on the real-time control
algorithms include servo loop rates of up to 65KHz and
synchronous, deterministic operation to within a few
microseconds. To attain this real-time performance, a
patch has been developed to the Linux operating system
that allows detachment of a processor core from the Linux
scheduler for the exclusive use of an assigned real-time
task. An overview of the real-time software design, which
takes advantage of this "core locking", and the particulars
of the Linux patch are described in this paper.

OVERVIEW
The two Laser Interferometer Gravitational-wave

Observatory (LIGO observatories are presently
undergoing an upgrade process to increase the overall
sensitivity of the instruments. As part of this Advanced
LIGO (aLIGO) upgrade, the Control and Data acquisition
System (CDS) is being updated and expanded. On the
hardware side:
• VME I/O crates are being replaced with PCI express

(PCIe) I/O modules and links
• VME processors are being replaced by standard, rack

mount server class computers
On the software side,
• Commercial real-time operating systems have been

replaced by Gentoo Linux, with a LIGO custom
patch to provide hard (plus or minus a few
microseconds) real-time performance

• A software package has been developed, Real-time
Code Generator (RCG), to allow system scientists
and engineers to develop control algorithms via a
Graphical User Interface (GUI).

HARDWARE
For aLIGO, PCI Express (PCIe) I/O modules replace

VME modules. These are primarily 16 and 18 bit, multi-
channel, simultaneous sampling, Analog to Digital
Convertor (ADC) and Digital to Analog Convertor (DAC)
modules. These modules are housed in a custom I/O
expansion Chassis (IOC), that contains:

Figure 1: aLIGO IOC and PCIe Fiber Link

• A commercial 17 slot PCIe backplane.
• Commercial fiber optic PCIe uplink to the

real-time control computer, that is remotely
located up to 300m away.

• LIGO custom designed timing module that
provides accurate ADC/DAC triggering at
65536Hz. This unit derives its time from the
new timing distribution system, which is
locked to the Global Positioning System (GPS)
time.

• Custom timing and interface backplane.
The IOCs are mounted in electronics racks, adjacent to

the control electronics that provide the control and data
acquisition analog signals.

The control computers are located in a separate
computer room, interfacing to the IOC via the PCIe fiber
optic link. These computers are standard, commercial rack
mount units. Each computer contains one or two, 6 core
processors and 6GByte, or more, of RAM, depending on
the application needs.

To run the LIGO real-time control software, care must
be taken in the selection of the computer motherboard.
First, the BIOS must be capable of mapping the required
number of PCIe modules. Tests have shown that not all
computers are created equal, in this sense.

As described later, our software requires that
applications not be interrupted by the system. However,
some motherboards have hidden System Management
Interrupts (SMI), which could not be disabled. This
introduced as much as 150µsec “glitches” in our code
execution times. In the selection process, the
Supermicro® X8DTU motherboards best fit our
application requirements.

 __

* LIGO was constructed by the California Institute of Technology and
Massachusetts Institute of Technology with funding from the National Science
Foundation and operates under cooperative agreement PHY-0107417.

SOFTWARE
Overview

The real-time software is designed as a complete
package, from providing a Graphical User Interface (GUI)
for code development, standard code library to develop
source code, ‘make’ functions to compile the code, to
final installation and execution of the software. For real-
time code development and execution, the primary
components of this package, discussed in further detail in
this paper, are:
• The LIGO Real-time Code Generator (RCG).
• A custom patch to the General Public License (GPL)

Linux operating system kernel to obtain real-time
performance.

The system also provides additional software tools in
support of the real-time software, listed here briefly, but
not within the scope of this paper:
• Data AcQuisition (DAQ) System software. This

software receives data from all LIGO real-time
systems, combines and compresses the information
into a standard file format, and archives the data to
disk.

• Network Data Server (NDS): Software that provides
data from the DAQ system, either real-time feeds or
from disk/tape archive, to various data clients.

• Dataviewer: Provides graphical representation of
data, from NDS, either in real-time or from archived
data.

• Diagnostic Test Tools (DTT): Provides a number of
standard diagnostic functions, including power
spectrums and swept-sine injection and transfer
function analysis capabilities. These diagnostics are
presented via a GUI.

• Foton: A GUI tool for designing and loading IIR
filter designs to the real-time software.

 In addition, the LIGO control system uses the
Experimental Physics and Industrial Control System
(EPICS) base software and extensions to provide
communications between real-time systems and operator
interfaces.

Real-Time Code Generator (RCG)

In planning for aLIGO CDS, it was foreseen that
continuing to write custom C code for control
applications, even with standard library parts, would
overburden the relatively small group of software
developers. Not only did final systems for aLIGO need to
be supported, but there were also many aLIGO subsystem
test facilities that would require CDS support very early in
the process. This led to the development of the RCG.

The RCG uses MATLAB® Simulink® as the GUI. A
custom library was added, that includes CDS custom
software modules and supported Simulink® parts. The
code developer may then use these parts in an application
model and interconnect the parts to describe desired
software execution sequence. Some key elements of this
library are:

• I/O: Parts are provided to describe and connect all of
the I/O modules supported by the RCG.

• Inter-process communications (IPC): real-time
communications between applications is provided
via shared memory (applications running on the
same computer), reflected memory networks
(applications running on computers located 4km
apart), or via a PCIe switched network fabric
(computers located within 300m of each other).
Latencies vary from a few nanoseconds, using
shared memory, a microsecond, using PCIe, or
15usec via the 4km-long reflected memory runs.

• IIR Filter Module: This is the key module for
developing the proper transfer functions for system
control. Depending on control complexity, a control
model may contain as many a few hundred of these
modules. Each of these modules may contain up to
10 separate filters, along with individual, and group,
on/off selections and gain and offsets, with ramping,
at runtime. For diagnostics, and data acquisition,
each module is provided with three output software
test point locations and a software test signal
injection location. The system also supports the
reloading of filter coefficients during runtime as new
filters are designed or updated.

• User defined part to support custom C code. This
provides a mechanism to allow users to include their
own custom C code into the control model, if
desired.

Once the model has been built and saved, a standard

“Makefile” is provided to produce the executable
software. Invoking ‘make’ starts the build process:
• RCG Perl scripts parse the model file, developing a

parts and code sequence list.
• Perl script produces the real-time C code source file.
• Compiler is invoked to produce the real-time

executable. This includes the user-defined
application, with standard RCG wrapper software.
The latter provides for proper code timing and
sequencing, standard set of diagnostics, connections
to the data acquisition system and I/O drivers.

• An EPICS sequencer and database are built to
support communications to/from the RCG real-time
process and EPICS channel access. This allows the
use of various EPICS extension software to provide
operator interfaces via Ethernet.

• Various files are produced to describe all of the code
data channels available to the data acquisition system
and diagnostic test point information.

• Produces a basic set of EPICS display screens for use
as operator interfaces.

Operating System
The software is designed to operate at sample rates

from 2048 samples/sec to 65536 samples/sec. The real-
time execution must be precise and repeatable to within a
few microseconds. Execution must also occur

synchronously with the 65536Hz clock provided by the
LIGO timing system.

To achieve this performance, the GPL Linux operating
system, used on LIGO real-time control machines, has
been modified with a LIGO custom kernel patch. This
patch was developed to isolate a given CPU core from the
Linux system for the exclusive use of the real-time control
program.

The Linux kernel comes with a built-in mechanism to
isolate a CPU core from the rest of the Linux system, both
Linux kernel and user space. This mechanism is called
CPU hot-plug. This interface provides a function in the
user space to off-line or shutdown CPU cores. This
interface does not, however, provide a mechanism to load
user specified software onto the core when it is set offline,
as it loads a CPU idle function.

The LIGO Linux patch is a modification of this
function. Rather than having the core load an idle function
as it goes offline, the patch software loads the desired
control application process as an independent kernel
object. The primary advantage of this method is that it
provides total core isolation for the control process. It is
now independent of the Linux scheduler and no other
tasks and/or interrupt routines will be assigned to this
core.

Now that the core and software have been isolated, a
code scheduling mechanism must be provided. This is
accomplished by a special RCG model known as the I/O
Processor (IOP). The IOP, further described in the
following section, provides sequencing and timing
information to the user application real-time processes for
synchronous operation.

If the control process needs to be removed, for example
if new code is to be loaded, it is necessary to unload the
control process and reinstate the core as a resource to the
Linux operating system. To do this, the control program is
issued a stop flag from user space. The code now exists
and returns. The “cpu idle” routine is called, then the CPU
core is brought back on line using the standard Linux
kernel mechanism.

It should be noted that application of this patch does not
turn the system into a traditional, full-featured real-time
operating system. A pre-emptive scheduler is not
provided, nor are interrupt capabilities implemented. So,
there are some downsides for general use:
• User must provide a scheduling mechanism. For

LIGO applications, the IOP provides for this
function.

• Each application requires a separate CPU core to run
on. This can be wasteful of resources for small
applications and/or require more cores.

• Control applications run as a continuous loop,
performing all calculations on each trigger. While the
application could be designed to only run some
calculations on each trigger and/or alternate what
code gets processed on a given cycle, there is no
mechanism, such as an interrupt, to asynchronously
trigger code.

 On the positive side, this method has a few advantages:

• No context switching and associated latencies. Once
locked into a core and cache, the code timing is very
precise.

• No chance of priority inversions.

Real-time Execution
As described above, each real-time application is

loaded on to its own CPU core at run time. The first CPU
core (0) is always reserved for Linux operating system use
and running non-real-time critical applications.
Applications in this category include:

• EPICS software to interface the real-time processors
with the controls Ethernet links.

• Data Acquisition networking software, which
transports data from the real-time processes to the
data acquisition system, via dedicated Ethernet links.
This data is sent in blocks at 16Hz.

• Arbitrary Waveform Generator: software used to
derive test signals for injection into the real-time
software.

• Test Point Manager: Conveys diagnostic test point
selections to the real-time processes. The control
process is built with a number of test points
included, each of which may be selected on demand
to provide data output to the data acquisition system,
and, in turn, to operator station diagnostic software.

CPU core 1 is reserved for the IOP. The IOP is

designed to run in a continuous loop at the highest
supported rate of the system, i.e. 65536Hz.

The IOP provides a number of key functions for the
system:

• Code synchronization. The IOP is triggered to run by
detection of a new set of data from the IOC ADC
modules. The ADC modules, in turn, are precisely
clocked by the LIGO timing system at 65536Hz.

• Initializes and maps all I/O, including PCIe I/O
modules.

• Signals the timing system to start sending clocks to
the I/O modules coincident with the next GPS 1PPS
time mark.

• Acts as the interface between ADC/DAC modules
and user applications, such that data is clocked in/out
on precise 65536Hz time marks.

Remaining CPU cores may now be loaded with user
control applications. These applications run in a
continuous loops at rates from 2048Hz to 65536Hz. The
basic loop process is:

• Wait for a trigger from the IOP, received via shared
memory.

• Get timestamp, in the form of GPS seconds, from the
IRIG-B receiver module. This module receives its
time from the LIGO timing system.

• Input and process ADC and IPC data.
• Run the user defined control application.
• Send outgoing DAC settings to the IOP.

• Send IPC information, via real-time networks or
shared memory.

• Output data to be sent to the data acquisition system,
via shared memory, to the data acquisition network
software.

• Communicate data to/from the EPICS interface, via
shared memory.

• Perform various housekeeping and self-diagnostic
tests.

• Return to Wait State.

STATUS
The real-time software, and associated hardware, have

been installed for use at a number of locations over the
past several years in support of test facilities. Installations
have ranged from “stand-alone” systems (real-time
control and DAQ software on a single computer, with one
or more IOC) for small LIGO test stands, to distributed
systems for larger LIGO test facilities. Presently, control
systems are being installed for aLIGO at the Hanford,
WA and Livingston, LA sites. These systems consist of as
many as 30 real-time control computers for distributed
control.

The latest released version of software, designated
V2.3, was distributed as the initial code install to both
LIGO sites in June of this year. The next release is
planned for November 2011, which incorporates a
number of enhancements requested by the application
developer community of scientists and engineers.

ACKNOWLEDGEMENTS
LIGO was constructed by the California Institute of
Technology and Massachusetts Institute of Technology
with funding from the National Science Foundation and
operates under cooperative agreement PHY-0107417.
This paper has LIGO Document Number LIGO-
P1100052-v1.

