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Abstract

The dynamics of light in Fabry-Perot cavities with varying length and
input laser frequency are analyzed and the exact condition for resonance
is derived. The resonance strongly depends on the light transit time in the
cavity and the Doppler effect due to the mirror motions. It is shown that
the cavity response to changes of its length is maximized while the response
to changes of the laser frequency is minimized if the frequency of these
changes is equal to multiples of the cavity free spectral range. Implications
of these results for the detection of gravitational waves using kilometer-scale
Fabry-Perot cavities are discussed.
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Fabry-Perot cavities, optical resonators, are commonly utilized for high-precision
frequency and distance measurements [1]. Currently, kilometer-scale Fabry-Perot
cavities with suspended mirrors are being employed in efforts to detect cosmic
gravitational waves [2, 3]. This application has stimulated renewed interest in
cavities with moving mirrors [4, 5, 6, 7] and motivated many efforts to model the
dynamics of such cavities on the computer [8, 9, 10, 11]. Recently the dynamics
of £elds in Fabry-Perot cavities were analyzed in the transient regime [12, 13].
In this letter, we address the dynamics of cavity £elds in the steady state regime
which is the intended operational state of gravitational wave detectors. We derive
analytical solutions to the cavity £eld equations, yielding formulas for the cavity
response to periodic variations in both the cavity length and the incident laser fre-
quency. It is in this state of dynamic resonance that the detectors will continuously
operate.

We consider a Fabry-Perot cavity with a laser £eld incident from one side
(Fig. 1). Variations in the cavity length are due to the mirror displacementsxa(t)
andxb(t) which are measured with respect to the reference planesa andb. The
nominal light transit time in the cavity and the cavity free spectral range (FSR)
are de£ned by

T = L/c, ωfsr = π/T. (1)

The £eld incident upon the cavity and the £eld circulating in the cavity are de-
scribed by plane waves with nominal frequencyω and wavenumberk (k = ω/c).
Variations in the laser frequency are denoted byδω(t). We assume that the mirror
displacements are much less than the nominal cavity length and that the deviations
of the laser frequency are much less than the nominal frequency.
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Figure 1: Mirror positions and £elds in Fabry-Perot cavity.

At any given place the electric £eld in the cavityE(t) oscillates at a very high
frequency. For simplicity, we suppress this fast-oscillating factor,exp(iωt), and
de£ne the slowly-varying £elds asE(t) = E(t) exp(−iωt). To properly account
for the phases of the propagating £elds, their complex amplitudes are de£ned at
£xed locations, reference planesa1 anda2 shown in Fig. 1.
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The equations for £elds in the cavity can be obtained by tracing a wavefront
during its complete round-trip in the cavity (starting from the reference planea2).
The propagation delaysτ1 andτ2 depend on the mirror positions and are given by

c τ1 = L − ε + xb(t − τ1), (2)

c τ2 = ε − xa(t − τ2), (3)

whereε is de£ned as shown in Fig. 1. Then the £elds in the cavity satisfy the
equations:

E ′(t) = −rbE(t − 2τ1)e
−2iωτ1 , (4)

E(t) = −raE
′(t − 2τ2)e

−2iωτ2 +

taEin(t − 2ε/c), (5)

wherera andrb are the mirror re¤ectivities, andta is the transmissivity of the front
mirror.

Because the £eld amplitudesE andE ′ do not change signi£cantly over times
of orderxa,b/c, the small variations in these amplitudes during the changes in
propagation times due to mirror displacements can be neglected. Furthermore,
the reference planesa and b can be chosen so that the nominal length of the
Fabry-Perot cavity becomes an integer multiple of the laser wavelength, making
exp(−2ikL) = 1. Finally, the small offsetε can be set to zero, and Eqs. (4)-(5),
can be combined yielding the “iteration” equation for the cavity £eld

E(t) = taEin(t) + rarbE(t − 2T ) exp[−2ikδL(t)]. (6)

HereδL(t) is the variation in the cavity length “seen” by the light circulating in
the cavity,

δL(t) = xb(t − T ) − xa(t). (7)

Note that the time delay appears in the coordinate of the end mirror, but not the
front mirror. This is simply a consequence of our placement of the laser source;
the light that enters the cavity re¤ects from the end mirror £rst and then the front
mirror. For δL = 0, Laplace transformation of both sides of Eq. (6) yields the
basic cavity response function

H(s) ≡ Ẽ(s)

Ẽin(s)
=

ta
1 − rarbe−2sT

, (8)

where tildes denote Laplace transforms.
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The static solution of Eq. (6) is found by considering a cavity with £xed
length (δL = const) and an input laser £eld with £xed amplitude and frequency,
(A, δω = const). In this case the input laser £eld and the cavity £eld are given by

Ein(t) = A eiδωt, (9)

E(t) = E0 eiδωt, (10)

whereE0 is the amplitude of the cavity £eld,

E0 =
taA

1 − rarbe−2iψ
, (11)

andψ is the phase offset,
ψ = Tδω + k δL. (12)

It can be seen from Eqs. (11) and (12) that the cavity £eld is maximized when the
cavity length and the laser frequency are adjusted so that

δω

ω
= −δL

L
. (13)

This is the well-known static resonance condition. The maximum amplitude of
the cavity £eld is given by

Ē =
taA

1 − rarb

. (14)

Light can also resonate in a Fabry-Perot cavity when its length and the laser
frequency are changing. For a £xed amplitude, the input laser £eld can be written
as

Ein(t) = A eiφ(t), (15)

whereφ(t) is the variable phase,

φ(t) =
∫ t

0
δω(t′)dt′. (16)

Then the steady-state solution of Eq. (6) is

E(t) = E0 eiφ(t), (17)

with the amplitudeE0 given by Eq. (11), under the condition that

φ(t) − φ(t − 2T ) + 2k δL(t) = const ≡ ψ. (18)

The maximum amplitude of the cavity £eld occurs whenψ = 0.
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Figure 2: Bode plot of the frequency-to-length transfer function,C(iΩ).

Thus dynamic resonance occurs when the phase of the input laser £eld is cor-
rected to compensate for the changes in the cavity length due to the mirror mo-
tions. The associated frequency correction is equal to the Doppler shift caused by
re¤ection from the moving mirrors

δω(t) − δω(t − 2T ) = −2
v(t)

c
ω, (19)

wherev(t) is the relative mirror velocity (v = dδL/dt). The equivalent formula
in the Laplace domain is

C(s)
δω̃(s)

ω
= −δL̃(s)

L
, (20)

whereC(s) is the normalized frequency-to-length transfer function which is given
by

C(s) =
1 − e−2sT

2sT
. (21)

A Bode plot, which combines the magnitude and phase ofC(s) for s = iΩ,
is shown in Fig. 2. The magnitude is just the familiar sinc function,|C(iΩ)| =
sin ΩT/ΩT , whereas the phase is a linear function ofΩ. C(s) has zeros at multi-
ples of the cavity free spectral range,

zn = iωfsrn, (22)
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wheren is integer, and therefore can be written as an in£nite product,

C(s) = e−sT
∞∏

n=1

(
1 − s2

z2
n

)
, (23)

which is useful for control system design1.
To maintain resonance, changes in the cavity length must be compensated by

changes in the laser frequency according to Eq. (20). If the frequency of such
changes is much less than the cavity free spectral range, thenC(s) ≈ 1. In this
case, Eq. (20) reduces to the quasi-static approximation,

δω̃(s)

ω
≈ −δL̃(s)

L
, (24)

in which length and laser frequency variations are treated equally. At frequencies
above the cavity free spectral range,C(s) ∼ 1/s, and increasingly larger laser
frequency changes are required to compensate for cavity length variations. More-
over, at multiples of the FSR no frequency-to-length compensation is possible.

In practice, Fabry-Perot cavities deviate from resonance, and a negative-feedback
control system is employed to reduce the deviations. For small deviations from
resonance, the cavity £eld can be described as

E(t) = [Ē + δE(t)]eiφ(t), (25)

whereĒ is the maximum £eld given by Eq.(14), andδE is a small perturbation
(|δE| ¿ |Ē|). Substituting this equation into Eq. (6), we see that the perturbation
evolves in time according to

δE(t) − rarbδE(t − 2T ) =

−irarbĒ [φ(t) − φ(t − 2T ) + 2k δL(t)] . (26)

This equation is easily solved in the Laplace domain, yielding

δẼ(s) = −irarbĒ

(
1 − e−2sT

)
φ̃(s) + 2k δL̃(s)

1 − rarbe−2sT
. (27)

Deviations of the cavity £eld from its maximum value can be measured by
the Pound-Drever-Hall (PDH) error signal which is widely utilized for feedback
control of Fabry-Perot cavities [14]. The PDH signal is obtained by coherent
detection of phase-modulated light re¤ected by the cavity. With the appropriate

1This formula is derived using the in£nite-product:sin x = x
∏∞

n=1(1 − x2/π2n2).
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choice of the demodulation phase, the PDH signal is proportional to the imaginary
part of the cavity £eld and therefore can be written as

δṼ (s) = const × H(s)

[
δL̃(s)

L
+ C(s)

δω̃(s)

ω

]
, (28)

whereH(s) is given by Eq. (8). In the presence of length and frequency variations,
feedback control will drive the error signal toward the null point,δṼ (s) = 0, thus
maintaining dynamic resonance according to Eq. (20).

The response of the PDH signal to either length or laser frequency deviations
can be found from Eq. (28). The normalized length-to-signal transfer function is
given by

HL(s) ≡ H(s)

H(0)
=

1 − rarb

1 − rarbe−2sT
. (29)

A Bode plot ofHL(s) is shown in Fig. 3 for the LIGO [2] Fabry-Perot cavities
with L = 4 km, ra = 0.985, andrb = 1. The magnitude of the transfer function,

|HL(iΩ)| =
1√

1 + F sin2 ΩT
, (30)

is the square-root of the well-known Airy function with the coef£cient of £nesse,
F = 4rarb/(1 − rarb)

2. (The Airy function describes the intensity pro£le of a
Fabry-Perot cavity [15].)

The poles ofHL(s) are given by

pn = iωfsrn − 1

τ
, (31)

wheren is integer, andτ is the storage time of the cavity,

τ =
2T

| ln(rarb)| . (32)

Therefore,HL can be written as an in£nite product,

HL(s) = esT
∞∏

n=−∞

pn

pn − s
, (33)

which can be truncated to a £nite number of terms for use in control system design.
The normalized frequency-to-signal transfer function is given by

Hω(s) ≡ C(s)HL(s) (34)
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Figure 3: Bode plot ofHL(iΩ) for the LIGO 4-km-long Fabry-Perot cavities. The
peaks occur at multiples of the FSR (37.5 kHz) and their half-width (91 Hz) is
equal to the inverse of the cavity storage time.

=

(
1 − e−2sT

2sT

) (
1 − rarb

1 − rarbe−2sT

)
. (35)

A Bode plot ofHω is shown in Fig. 4.Hω has zeros given by Eq. (22) withn 6= 0,
and poles given by Eq. (31). The poles and zeros come in pairs except for the
lowest order pole (n = 0) which does not have a matching zero. ThereforeHω(s)
can be written as an in£nite product

Hω(s) =
p0

p0 − s

∞∏
n=−∞

′ (
s − zn

s − pn

)
, (36)

where the prime indicates thatn = 0 term is omitted from the product.
The zeros in the transfer function indicate that the cavity shows no response

(δE = 0) to laser frequency deviations if these deviations occur at multiples of
the cavity FSR. In this case, the amplitude of the circulating £eld is constant while
the phase of the circulating £eld is changing in accordance with the phase of the
input laser £eld.

In summary, we have shown that it is possible to maintain resonance of light in
Fabry-Perot cavities even when the cavity length and laser frequency are chang-
ing. In this dynamic resonance state, changes in the laser frequency and changes in
the cavity length play very different roles (Eq. (20)) in contrast to the quasi-static
resonance state where they appear equally (Eq. (24)). Maintenance of dynamic
resonance requires that the frequency-to-length transfer function,C(s), be taken
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Figure 4: Bode plot ofHω(iΩ). The abrupt drops of magnitude are due to the
zero-pole pairs at multiples of FSR.

into account when compensating for length variations by frequency changes and
vice versa. Compensation for length variations by frequency changes becomes
increasingly more dif£cult at frequencies above the FSR, and impossible at mul-
tiples of the FSR.

As can be seen in Fig. 4, the PDH error signal from frequency variations de-
creases as1/Ω aboveΩ0 (Ω0 = 1/τ ) and is insensitive to frequency variations
occurring at frequencies equal to multiples of the cavity FSR. For length varia-
tions, the PDH signal is a periodic function of frequency. It decreases as1/Ω
aboveΩ0, but only to the level of1/

√
F and then returns to its maximum value

(Fig. 3). Thus at multiples of the FSR, the sensitivity to length variations is maxi-
mum while the sensitivity to frequency variations is minimum.

The enhanced sensitivity to length variations and insensitivity to laser fre-
quency variations might suggest that searches for high-frequency gravitational
waves at multiples of FSR are feasible. However, because the gravitational wave
interacts with the light as well as the cavity mirrors [16], the normalized re-
sponse of the PDH error signal to gravitational waves is functionally equivalent
to Hω(s) rather thanHL(s) [5]. Thus gravitational wave interferometers which
utilize Fabry-Perot cavities are insensitive to gravitational waves at these higher
frequencies where they are maximally sensitive to length ¤uctuations.

This research was supported by National Science Foundation under grants
PHY-9210038 and PHY-0070854.
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